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Datacenter fabric proposals
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Which one does the operator pick?
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s there a single fabric that
provides flexible and fast
bandwidth allocation control?

Yes | NUMFabric provides a flexible fabric that is

also fast.



Flexible and Fast

e Supports wide e Flows converge to
variety of bandwidth correct rates before
allocation objectives the datacenter

workload changes



NUMFabric: Flexibility

Translate to utility
functions
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Network Utility Maximization in general

maximize U(X) = ). U;(x;)

subject to
AX < C
X =0

Problem ?

Existing NUM solutions are slow and unsuitable for data

center workloads




Existing distributed NUM solutions

Flow rates

Network sends = 04 /\/\/v -
congestion 02 e ——

Signals

Iterations

Sources send traffic

* Each solurce iteratively adjusts rates following its own gradient towards
optima

* The sum of the rates moves towards the global optimal



Gradient based methods

Overshooting might cause
bloated queues and packet

drops
arger steps to optimal Smaller steps to optimal
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How can we fix this?

Can we enable larger
Overshooting might cause steps to optimal but
drops queues bloating without over-shooting

and under-utilization?

Larger steps to optimal
Larger steps to optimal
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Use Weights instead of rates !

Setting weights of the flow and allowing a fabric to allocate rates proportional to
the weights enables exactly this.




NUMFabric key idea

* |In NUMFabric, sources give up direct control over rates

* The sources specify “weights” and the Weighted Max-Min fabric
allocates relative rates proportional to the weights of all flows

Setting weights to control rates
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Application level Translate to utility
functions

objective — maximize Z U;(x;)
L

Flexible &1
‘ Weights ‘

Weighted Max-Min rate

Layer that sets weights of . .
allocation according to the

flows based on network o
feedback weights

Fast

t Network feedback ,



Weight inference



Distributed NUM mechanism

NUM Objective Maximize 2 Ui(xi)
i

KKT Conditions: Equations that must necessarily be true at optimal solution
Price of a link : variable that indicates the congestion level at the switch

_ _ At optimal, either the link is fully
pil 2 x; —¢)=0 - ’
l( ces ) utilized or the price of the link is zero

At optimal, the marginal utility of the

U/'(x;) = z 1 - source is equal to the sum of the prices
1 EL(Q) along the path of the flow



Distributed NUM mechanism

Switches set their prices measuring congestion

Pz(Ziesa)x —¢)=0 m p=p +ax (ZiES(l) Xi — Cl)
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Sources selagttestes HoWows
Sources set the rates of the flows using price feedback

Ui'(x) = p ,
l;i) l m x; = Inverse of U, (ZlEL(i)pl)




NUMFabric iterations

Controlling rates directly causes the brittleness in the existing solutions.

Switches adapt prices at every iteration so that the
Pz(Ziesa) x; —¢)=0 J S -

WMM layer

always achieves
100% link
utilization

w; = Inverse of U, -
Ui,(xi) _ Z D, x f (Zl EL(l) pl)

1 €L() WMM layer converts these weights to rates



NUMFabric iterations

As we know, controlling rates directly causes the brittleness in the existing solutions.

Swit residue; ) hat the

Pr=py+ min ( hops traversed by flow; / 1|
pi(2 es()Xi — ) =0 ; e
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Operation summary

Weight adaptation at hosts Price adaptation at switches
Path prices Flow weights Residues | mmp | Prices
Rates - Residues

Weighted Max-Min
Feasible and stable rates for all flows
based on weights




Evaluation



Evaluation setup

40Gbps
Fabric Links
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Edge Links

* ns3 simulations: 128-port leaf-spine fabric
e RTT =~16us

* Evaluate speed of convergence

* Evaluate flexibility

* Compare the bandwidth allocations on NUMFabric with different utility
functions against point solutions for different objectives— pFabric, MPTCP, etc.
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Fast convergence

* 100 flows start/stop at

1.0 “« ”
every “event”.
0.8 * We let the system
z.. converge before
§ triggering another
o 0.4 event
D S » Median convergence
0.2 —— DGD 5
—— RCP* time (335 us) of
%8.0 0.5 1.0 1.5 2.0 NUMFabric is 2.3X
Time (ms) better that the other

DGD : Dual Gradient Descent algorithm = algorithms
RCP* : Alpha-Fair RCP



Flexibility : minimize flow completion times
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Flexibility : minimize flow completion times

Il Resource pooling
EE No resource pooling maximize Zi log(yl)

=
o
o

where y, = aggregate rate of

flow across all sub-paths
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Conclusions

* NUMFabric enables operators to network’s
bandwidth allocation for different bandwidth allocation objectives

* NUMFabric uses weights as knobs to influence rates and thus,
decouples the objectives of finding optimal rates and stable rates.This
makes it

* Using NUMFabric with objective functions on co-flows, VM-level and
tenant-level aggregates is focus of our current and future work.
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