
NUMFabric:	Fast	and	Flexible	
Bandwidth	Allocation	in	

Datacenters
Kanthi Nagaraj (Stanford),	Dinesh	Bharadia(M.I.T.),	Mohammad	Alizadeh (M.I.T.),	
Hongzi Mao	(M.I.T.),	Sandeep	Chinchali (Stanford)	and	Sachin Katti(Stanford)

Sigcomm 2016



Datacenter	fabric	proposals



Which	one	does	the	operator	pick?



Is	there	a	single	fabric	that	
provides	flexible	and	fast	
bandwidth	allocation	control?

Yes	!	NUMFabric provides	a	flexible fabric	that	is	
also	fast.



Flexible	and	Fast

Flexible

• Supports		wide	
variety	of	bandwidth	
allocation	objectives

Fast

• Flows	converge	to	
correct	rates	before	
the	datacenter	
workload	changes



NUMFabric:	Flexibility

6

Minimize	avg flow	
completion	time

Translate	to	utility	
functions

Hosts

send	utility
function	to	

hosts

Weighted	proportional	
fairness

Application	level	
objective m𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 ∑ 	)*	

	+*
�
-m𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 ∑ 𝑤𝑖	 ∗ log	(𝑥-)�
-

Flow	i’s utility	at	rate	
xi

Resource	
pooling m𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 ∑ 𝑤𝑖	 ∗ log	(𝑦-)�

-

where	yi =	aggregate	rate	of	flow	
across	all	subpaths

xi ß rate	of	flow	i
si ß size	of	flow	i
wi ß weight	of	flow	i



Network	Utility	Maximization	in	general

maximize	𝑈 𝑋 = 	∑ 𝑈𝑖 𝑥𝑖�
-?@	 					

subject	to	
AX		≤ 𝐶
X		≥	0
Problem	?

Existing	NUM	solutions	are	slow	and	unsuitable	for	data	
center	workloads



Existing	distributed	NUM	solutions

• Each	source	iteratively	adjusts	rates	following	its	own	gradient	towards	
optimal
• The	sum	of	the	rates	moves	towards	the	global	optimal

Network	sends	
congestion	
Signals

H9H8H6H3H2H1 H4 H5 H7

Each	source	sets	its	rate	based	on	gradient	of	its	utility	
function	and	the	network	feedbackSources	send	traffic	

0
0.2
0.4
0.6
0.8
1

1.2

1 6 11 16
Ra

te
s

Iterations

Flow	rates



Gradient	based	methods	

Capacity Capacity

0
0.2
0.4
0.6
0.8
1

1.2

1 6 11 16 21 26

N
or
m
al
ize

d	
ra
te
s

Iterations

Larger	steps	to	optimal

0
0.2
0.4
0.6
0.8
1

1.2

1 6 11 16 21 26 31
Iterations

Smaller	steps	to	optimal

CapacityCapacity

Overshooting	might	cause	
bloated	queues	and	packet	

drops



How	can	we	fix	this?

Use	Weights	instead	of	rates	!
Setting	weights	of	the	flow	and	allowing	a	fabric	to	allocate	rates	proportional	to	

the	weights	enables	exactly	this.

0
0.2
0.4
0.6
0.8
1

1.2

1 6 11 16 21 26

N
or
m
al
ize

d	
ra
te
s

Iterations

Larger	steps	to	optimal

0
0.2
0.4
0.6
0.8
1

1.2

1 3 5 7 9 11 13 15 17 19
Iterations

Larger	steps	to	optimal

?

Can	we	enable	larger	
steps	to	optimal	but	
without	over-shooting	
and	under-utilization?

Overshooting	might	cause	
drops,	queues	bloating

CapacityCapacity



NUMFabric key	idea

Capacity

• In	NUMFabric,	sources	give	up	direct	control	over	rates
• The	sources	specify	“weights”	and	the	Weighted	Max-Min	fabric	

allocates	relative	rates	proportional	to	the	weights	of	all	flows

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21

Setting	weights	to	control	rates



Weights

Network	feedback

Layer	that	sets	weights	of	
flows	based	on	network	
feedback

Layer	that	realizes	rates	
proportional	to	the	weights	
of	the	flows

Translate	to	utility	
functions

Application	level	
objective

Flexible

Fast

Weighted	Max-Min	rate	
allocation	according	to	the	
weights



Weight	inference



Distributed	NUM	mechanism

𝑈𝑖′ 𝑥𝑖 	= 		 N 𝑝𝑙
Q	∈S(-)

𝑝𝑙 ∑ 𝑥𝑖	 − 𝑐Q�
-	∈@(Q) =	0

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	N𝑈𝑖(𝑥-)
�

-

NUM	Objective

KKT	Conditions:	Equations	that	must	necessarily	be	true	at	optimal	solution

At	optimal,	either	the	link	is	fully	
utilized	or	the	price	of	the	link	is	zero

At	optimal,	the	marginal	utility	of	the	
source	is	equal	to	the	sum	of	the	prices	

along	the	path	of	the	flow

Price	of	a	link	:	variable	that	indicates	the	congestion	level	at	the	switch



Distributed	NUM	mechanism

𝑈𝑖′ 𝑥𝑖 	= 		 N 𝑝𝑙
Q	∈S(-)

𝑝𝑙 ∑ 𝑥𝑖	 − 𝑐Q�
-	∈@(Q) =	0

xi	= 𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝑜𝑓	𝑈𝑖^	(∑ 𝑝𝑙)Q	∈S(-)

Sources	set	the	rates	of	the	flows	using	price	feedback

Switches	set	their	prices	measuring	congestion

solve

solve

Network	
congestion	
signals

	 N 𝑝𝑙
Q	∈S(-)

H9H8H6H3H2H1 H4 H5 H7

pl = 𝑝𝑙	 + 𝛼 ∗ ∑ 𝑥𝑖	 − 𝑐Q�
-	∈@(Q)

Sources	set	rates	of	flowsSources	adapt	rates	of	flows



NUMFabric iterations

𝑈𝑖′ 𝑥𝑖 	= 		 N 𝑝𝑙
Q	∈S(-)

𝑝𝑙 ∑ 𝑥𝑖	 − 𝑐Q�
-	∈@(Q) =	0

wi	= 𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝑜𝑓	𝑈𝑖^	(∑ 𝑝𝑙)Q	∈S(-)

WMM	layer	
always	achieves	
100%	link	
utilization	

✔

Controlling	rates	directly	causes	the	brittleness	in	the	existing	solutions.

WMM	layer	converts	these	weights	to	rates✖

H9H8H6H3H2H1 H4 H5 H7

Switches	adapt	prices	at	every	iteration	so	that	the	
flow	rates	move	closer	to	optimal



NUMFabric iterations
As	we	know,	controlling	rates	directly	causes	the	brittleness	in	the	existing	solutions.

✖

Switches	adapt	prices	every	iteration	so	that	the	
flow	rates	to	move	closer	to	optimal

𝑅𝑒𝑠𝑖𝑑𝑢𝑒 = 	𝑈-′ 𝑥𝑖 	−	 N 𝑝𝑙
Q	∈S(-)

𝑝𝑙 = 𝑝Q + min
𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑖

	ℎ𝑜𝑝𝑠	𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑	𝑏𝑦	𝑓𝑙𝑜𝑤-		

✔

H9H8H6H3H2H1 H4 H5 H7

ResidueResidue

𝑝𝑙 ∑ 𝑥𝑖	 − 𝑐Q�
-	∈@(Q) =	0✔

𝑈𝑖′ 𝑥𝑖 	= 		 N 𝑝𝑙
Q	∈S(-)



Operation	summary	

Weighted	Max-Min
Feasible	and	stable	rates	for	all	flows	

based	on	weights

Weight adaptation	at	hosts	
Path	prices
Rates

Flow	weights
Residues

Price	adaptation	at	switches	
Residues Prices



Evaluation



Evaluation	setup

20

40Gbps
Fabric	Links

10Gbps
Edge	Links 8	Racks

• ns3	simulations:	128-port	leaf-spine	fabric
• RTT	=	~16µs

• Evaluate	speed	of	convergence
• Evaluate	flexibility

• Compare	the	bandwidth	allocations	on	NUMFabric with	different	utility	
functions	against	point	solutions	for	different	objectives– pFabric,	MPTCP,	etc.



Fast	convergence
• 100	flows	start/stop	at	
every	“event”.

• We	let	the	system
converge	before	
triggering	another	
event

• Median	convergence	
time	(335	us)	of	
NUMFabric is	2.3X	
better	that	the	other	
algorithmsDGD	:		Dual	Gradient	Descent	algorithm

RCP*	:		Alpha-Fair	RCP	



Flexibility	:	minimize	flow	completion	times

m𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 ∑ 	)*	
	+*

�
-

xi à rate	of	the	flow
si à size	of	the	flow	



Flexibility	:	minimize	flow	completion	times

m𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 ∑ log	(𝑦-)�
-

where	yi =	aggregate	rate	of	
flow	across	all	sub-paths



Conclusions

• NUMFabric enables	operators	to	flexibly	optimize	network’s	
bandwidth	allocation	for	different	bandwidth	allocation	objectives
• NUMFabric uses	weights	as	knobs	to	influence	rates	and	thus,	
decouples	the	objectives	of	finding	optimal	rates	and	stable	rates.This
makes	it	2-3X	faster	existing	mechanisms.
• Using	NUMFabric with	objective	functions	on	co-flows,	VM-level	and	
tenant-level	aggregates	is	focus	of	our	current	and	future	work.



Thank	you


