NUMFabric: Fast and Flexible
Bandwidth Allocation in
Datacenters

Kanthi Nagaraj (Stanford), Dinesh Bharadia(M.l.T.), Mohammad Alizadeh (M.I.T.),
Hongzi Mao (M.I.T.), Sandeep Chinchali (Stanford) and Sachin Katti(Stanford)

Sigcomm 2016

Datacenter fabric proposals

7] PESasipassCONGA
MPTEPFaleanePml"u"anz

nepriow W MCPES Dfabic, L

> "o
e e
ClDO k=

J

Which one does the operator pick?

A% |))I(pESrastpassONGA

? MPTGPFMBpmgmuuanz

Reprloy W MCPES Dfabic, L

= e m—
ClDO k=

I]

s there a single fabric that
provides flexible and fast
bandwidth allocation control?

Yes | NUMFabric provides a flexible fabric that is

also fast.

Flexible and Fast

e Supports wide e Flows converge to
variety of bandwidth correct rates before
allocation objectives the datacenter

workload changes

NUMFabric: Flexibility

Translate to utility
functions

D ——

Resource
pooling

send utility >
function to
hosts

X;

oy S S S e g g
1 o o C T ot

AN AN x; € rate of flow i

Hosts s; € size of flow i
; w, € weight of flow i

Network Utility Maximization in general

maximize U(X) =). U;(x;)

subject to
AX < C
X =0

Problem ?

Existing NUM solutions are slow and unsuitable for data

center workloads

Existing distributed NUM solutions

Flow rates

Network sends = 04 /\/\/v -
congestion 02 e ——

Signals

Iterations

Sources send traffic

* Each solurce iteratively adjusts rates following its own gradient towards
optima

* The sum of the rates moves towards the global optimal

Gradient based methods

Overshooting might cause
bloated queues and packet

drops
arger steps to optimal Smaller steps to optimal

1.2

é 1.i Capacity) Capacity
< 0.8 0.8
N 0.6 0.6
£ 04 0.4
g 0.2 0.2
0 0
! 6 1 16 21 26 1 G 11 16 21 26 31

Iterations)
Iterations

How can we fix this?

Can we enable larger
Overshooting might cause steps to optimal but
drops queues bloating without over-shooting

and under-utilization?

Larger steps to optimal
Larger steps to optimal

1.2 :
Capacity 1 Capacity

[

=
= N

©oooo
N B O O

Normalized rates

o

1 3 5 7 9 11 13 15 17 19
Iterations

Iterations

Use Weights instead of rates !

Setting weights of the flow and allowing a fabric to allocate rates proportional to
the weights enables exactly this.

NUMFabric key idea

* |In NUMFabric, sources give up direct control over rates

* The sources specify “weights” and the Weighted Max-Min fabric
allocates relative rates proportional to the weights of all flows

Setting weights to control rates

1.2 Capacity

0.8
0.6
0.4 |
0.2

Application level Translate to utility
functions

objective — maximize Z U;(x;)
L

Flexible &1
‘ Weights ‘

Weighted Max-Min rate

Layer that sets weights of . .
allocation according to the

flows based on network o
feedback weights

Fast

t Network feedback ,

Weight inference

Distributed NUM mechanism

NUM Objective Maximize 2 Ui(xi)
i

KKT Conditions: Equations that must necessarily be true at optimal solution
Price of a link : variable that indicates the congestion level at the switch

_ _ At optimal, either the link is fully
pil 2 x; —¢)=0 - ’
l(ces) utilized or the price of the link is zero

At optimal, the marginal utility of the

U/'(x;) = z 1 - source is equal to the sum of the prices
1 EL(Q) along the path of the flow

Distributed NUM mechanism

Switches set their prices measuring congestion

Pz(Ziesa)x —¢)=0 m p=p +ax (ZiES(l) Xi — Cl)
Network ’4%\ ,,
z P = congestion "\

L €T S|gnals

e
e
il
T
TR
L

R e R e o a ia e

Sources selagttestes HoWows
Sources set the rates of the flows using price feedback

Ui'(x) = p ,
l;i) l m x; = Inverse of U, (ZlEL(i)pl)

NUMFabric iterations

Controlling rates directly causes the brittleness in the existing solutions.

Switches adapt prices at every iteration so that the
Pz(Ziesa) x; —¢)=0 J S -

WMM layer

always achieves
100% link
utilization

w; = Inverse of U, -
Ui,(xi) _ Z D, x f (Zl EL(l) pl)

1 €L() WMM layer converts these weights to rates

NUMFabric iterations

As we know, controlling rates directly causes the brittleness in the existing solutions.

Swit residue;) hat the

Pr=py+ min (hops traversed by flow; / 1|
pi(2 es()Xi —) =0 ; e

Ul-’(xl-) = z D1 d - Residue = Ul-’(xl-) — z D1

il L €L(D)

Operation summary

Weight adaptation at hosts Price adaptation at switches
Path prices Flow weights Residues | mmp | Prices
Rates - Residues

Weighted Max-Min
Feasible and stable rates for all flows
based on weights

Evaluation

Evaluation setup

40Gbps
Fabric Links

EEEEEEEEEEEEEEEEEEE It 1 e !
1 0 G p S EEEEEEEEEEEEEEEEEEE - I o e vt

Edge Links

* ns3 simulations: 128-port leaf-spine fabric
e RTT =~16us

* Evaluate speed of convergence

* Evaluate flexibility

* Compare the bandwidth allocations on NUMFabric with different utility
functions against point solutions for different objectives— pFabric, MPTCP, etc.

20

Fast convergence

* 100 flows start/stop at

1.0 “« ”
every “event”.
0.8 * We let the system
z.. converge before
§ triggering another
o 0.4 event
D S » Median convergence
0.2 —— DGD 5
—— RCP* time (335 us) of
%8.0 0.5 1.0 1.5 2.0 NUMFabric is 2.3X
Time (ms) better that the other

DGD : Dual Gradient Descent algorithm = algorithms
RCP* : Alpha-Fair RCP

Flexibility : minimize flow completion times

4 | . Xi
—— NUMFabric maximize 2;—

E 2GS x; = rate of the flow
N 3 s, =2 size of the flow
O
—
O
=
O
LL

35.2 0.3 04 05 06 0.7 0.8
Load

Flexibility : minimize flow completion times

Il Resource pooling
EE No resource pooling maximize Zi log(yl)

=
o
o

where y, = aggregate rate of

flow across all sub-paths
20I I I
0
1 2 3 4 5 6 7 8

Number of subflows

o) 00]
o o

Throughput (% of the optimal)
AN
@)

Conclusions

* NUMFabric enables operators to network’s
bandwidth allocation for different bandwidth allocation objectives

* NUMFabric uses weights as knobs to influence rates and thus,
decouples the objectives of finding optimal rates and stable rates.This
makes it

* Using NUMFabric with objective functions on co-flows, VM-level and
tenant-level aggregates is focus of our current and future work.

Thank you

