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ABSTRACT

This paper presents SSLIDE, Sound Source Localization for Indoors
using DEep learning, which applies deep neural networks (DNNs)
with encoder-decoder structure to localize sound sources with ran-
dom positions in a continuous space. The spatial features of sound
signals received by each microphone are extracted and represented
as likelihood surfaces for the sound source locations in each point.
Our DNN consists of an encoder network followed by two decoders.
The encoder obtains a compressed representation of the input likeli-
hoods. One decoder resolves the multipath caused by reverberation,
and the other decoder estimates the source location. Experiments
based on both the simulated and experimental data show that our
method can not only outperform multiple signal classification (MU-
SIC), steered response power with phase transform (SRP-PHAT),
sparse Bayesian learning (SBL), and a competing convolutional neu-
ral network (CNN) approach in the reverberant environment but also
achieve a good generalization performance.

Index Terms— Indoor sound source localization, multipath,
encoder-decoder structure, deep neural networks

1. INTRODUCTION

Sound source localization (SSL) has widespread applications in hu-
man-robot interaction [[1]], ocean acoustics [2], teleconferencing [3]],
and automatic speech recognition [4]]. For example, in a hospital,
attending robots can locate and attend to patients based on their
voices [5]]. However, SSL in reverberant environments is challenging
due to multipath artifacts in received signals. This effect degrades
SSL performance. Thus, it is important to develop SSL methods
that are robust to reverberation [6].

While traditional SSL algorithms [[7H12]] rely on estimation the-
ory or statistics, they fail in dynamic and reverberant environments.
A well-known subspace based technique, multiple signal classifica-
tion (MUSIC) [8]] is known to suffer from correlated sources which
are prevalent in reverberant environments. Another classical SSL
method, steered response power with phase transform (SRP-PHAT)
[9H11]] has been shown to not be robust to non-stationary signal like
speech. Recently, SSL approaches based on deep neural networks
(DNNS5s) have been proposed [13520]. Most of the approaches are
based on supervised learning. In [[13]], a multilayer perceptron DNN
is proposed for DOA estimation. In [14]], a SSL framework based on
convolutional neural network (CNN) is proposed. A learning based
SSL approach using discriminative training is presented in [15[. The
authors in [16] propose a convolutional recurrent DNN for SSL and
sound event detection. In [17]], a robust SSL guided by deep learn-
ing based time-frequency masking framework was presented. There
are also some works using unsupervised learning [[18|] and semi-
supervised learning methods based on manifold learning [19], and
deep generative modeling [20]. But all of these methods can only
work well when the sensor-source distance is small, which limits
their implementation in real-world settings.

In this work, we present SSLIDE, a SSL method based on DNN
with encoder-decoder structure. Our method can resolve randomly
located sources in the room and can achieve a good generalization
performance. Inspired by [21], the major novelty of the architec-
ture lies in the two parallel decoders that help in solving two dis-
tinct and independent problems. One decoder is designed to re-
solve the multipath artifacts, and the other to predict the locations
of the sound sources. By training these decoders in parallel, the
DNN learns to jointly predict the locations of sound sources and
remove the multipath artifacts on range offsets. We compare our ap-
proach with other baseline SSL methods, including multiple signal
classification (MUSIC) 8]}, steered response power with phase trans-
form (SRP-PHAT) [9H11]], Sparse Bayesian Learning (SBL) [22],
and CNN [14]. Based on the experiment results, we find SSLIDE
outperforms the baseline methods and generalizes well across space,
perturbations of reverberation time, microphone spacing, and input
speech.

2. PROPOSED METHOD

To understand how the proposed DNN solves for the reverberation
problem and helps in efficient SSL, let us first look into the funda-
mentals of sound transmissions in a given environment. Consider
the acoustics signals in the time domain

yi =sx*h; +n; (D

where 3; € RT is the signal received by ith microphone (i €
{1,..., M}, M is the number of microphones), s the source signal,
and n; the noise for the ith microphone. h; is the room impulse re-
sponses (RIRs), which characterizes the reverberation of the room.
Denote y = [y1,...,ym|’ € RM*L as the collections of the
received signal of all sensors with audio length L.

For N arrays with K microphones in each array (i.e. M =
NK),y can be reshaped as a tensor with dimension K X N x L. So,
for a given input received signal y with .S snapshots and 7" datapoints
(number of independent measurements), there are C' = T'S frames
for y.

2.1. Features extraction

One of the key components in designing a DNN model is to under-
stand the input data and represent it appropriately for the network to
be able to learn the required application using the input data. While
there have been existing works like MUSIC and SRP-PHAT that
enable accurate SSL for environments with low reverberation, their
SSL performance degrades significantly in dynamic and reverberant
environments.

We first use standard beamforming to obtain source location
likelihoods in a 2D space. We obtain Y € C%*F*K*N ‘the STFT
output of y with S snapshots and F' frequency bins, where L =
2FS. While 2F is the total number of frequency bins in the STFT,



we only consider the positive half of the frequency bins. For 7" dat-
apoints, then there are C' = T'S frames for Y.

Assume a uniform linear array (ULA) and a broadband signal.
Inspired by [23]], we can define a 2-D function [23]] which can indi-
cate the likelihood of the signal coming from the angle 6 and distance
d for array n € {1,..., N} and frame s € {1,..., S}
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where j = +/—1 and u, fo, fi, c stand for the spacing between mi-
crophones, median frequency, the frequency corresponding for the
Ith frequency bin, the speed of sound, respectively. Pns(6,d) is
beam power. Y;; represents the STFT output for the ith microphone
and [th frequency bin. When the sound source is from angle ¢ and
distance d, then P,,(6, d) have a high value. If we have U and V/
grid points for 6 and d, then we will obtain a likelihood surface with
dimension U x V which can indicate the likelihood of the signal in
the given 6 and d. Fig.|[1|(a) is one of the examples.

For reverberation and noise free data, the localization is sim-
ply identifying the 6 and d that correspond to the maximum like-
lihood [21]]. Due to the reverberation, much of the sound received
by the microphones is a result of multipath, which is a complicated
function of the different microphone locations relative to the source.
Therefore, peaks in the likelihood surface may no longer indicate
the correct result in terms of their predicted distance d as depicted in

Fig.[T](a).

2.2. Range compensation

To help overcome challenges of source localization in reverberant
environments, we design a second decoder to explicitly correct for
variation in multipath artifacts due to differences in microphone lo-
cation. Details on the decoder and the loss function are further de-
scribed in Section 2.4.

To enable this decoder to learn to alleviate range offsets cause
by multipath artefacts, we will artificially generate likelihood sur-
faces with range compensation as labels. To do so, we first identify
the direct path as the path with the least range measurement, d in
the incorrect range image as shown in Fig. [I] (a). We then use the
actual range measurement expected range measurement, d, from the
given ground truth location for that specific measurement. We then
compensate this offset in the given RIR measurement to get the ex-
pected likelihood profile as seen in Fig. [T|(b). More formally, for the
STFT output in the sth frame and kth microphone of the nth array
Y*® € CF*1| the range is compensated by

}_/kns _ Ykns ° ej27r'L9LCd" (3)
where ¢ = [f1, ..., fF]T € RF*1 is a collection of all frequencies.
Scalar d,, and d,, are the estimated ranges for the direct path and
true ranges of the nth array, and o represents the Hadamard product.
Fig. [Ib) shows the likelihood surface after range compensation.
Our results show that the range compensation will make DNN easier
to identify the correct location of the sound source.

We have generated two categories of likelihood surfaces with di-
mension U x V. While we can perform single point identification
based object detection tasks on these images, each of these images
are with respect to their own microphones and lack the context of
the global coordinates. To overcome that problem, we convert these
range-angle images into 2D Cartesian images which show the coor-
dinate with respect to one of the arrays. We perform a coordinate
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Fig. 1. Likelihood surfaces (a) before and (b) after range compen-
sation, and (c) after range compensation and coordinate transforma-
tion, (d) Output likelihood surface from localization decoder. The
correct source position (+), and maximum value (for (a) - (c)) / pre-
dicted location (for (d)) (o) are indicated. All plots are based on the
same testing data.

transform on these images to convert to a 2-D Cartesian plane with
dimension Y x X as shown in Fig c) to encode the locations of
these multiple arrays.

2.3. Target processing

Now that we have defined the images for us to perform the single
point identification, we need to define the targets for the network to
learn the SSL task. One naive way to generate the target images is
to only mark the target position as one and the rest positions as ze-
ros. Unfortunately, this method will make the loss extremely small,
which will bring about the gradient underflows. The network can-
not learn how to predict the locations due to the almost vanishing
gradients.

Thus, we use a negative exponential label to represent the target
position. The target of the network will also be a likelihood surface
with dimension Y x X. The distance between a random position
(2’,y") in the likelihood surface and ground-truth position (z, y) is

d@',y") = /(' —2)> + (v —9)% 4)

Then its value in the likelihood surface I(x’,y") will be marked as
!, y) = e 0 ®)

where o is a hyperparameter controlling the rate of decay. For
d(z',y’) = 0, then I(z,y’) = 1 its maximum value. Far from
the target position, the value will decay significantly. For most of
the points in the heatmap, the values is close to 0. These output
representations is helpful for a smoother gradient flow.

2.4. SSLIDE architecture

Now that we have the inputs and targets for performing single point
identification, we utilize the network architecture as shown in Fig.
[2] and based on encoder-decoder architecture with one encoder and
two parallel decoders inspired from [21]]. The input to the encoder is
the likelihood surface without range compensation indicated as (2).
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Fig. 2. SSLIDE architecture. C', N, X and Y are followed by the
definitions in Sec 2.1-2.4. s and p stand for stride and padding,
respectively

The encoder compresses this representation and then feeds to both
of the decoders. The two decoders will focus on two different tasks
simultaneously. The multipath alleviation decoder will use the like-
lihood surface with range compensation mentioned in Sec. [2.2] as
targets to train the network to generate the likelihood surface with-
out range offsets. With the help of this decoder, the neural network
will learn the multipath profile and how to alleviate such an artifact
with respect to the range estimation, which will facilitate the local-
ization decoder to identify the source locations. The localization
decoder aims to predict the location of the sound source by using the
target likelihood surface mentioned in [2:3] as labels. The output for
the localization decoder is also a likelihood surface with dimension
Y x X. The location with the highest value in this output image will
be marked as the predicted location. Note that since we have used the
ground-truth position to generate the target images with range com-
pensation, the multipath alleviation decoder will only appear during
the training phase, and it will be turned off during the testing phase.

The loss function for the multipath alleviation decoder is l2-loss
1w, ,
Lmultipath = N Z ”-Icz)ut - IZarget”Q (6)
i=1

where I¢,; and I Zarget are the decoder outputs and the targets (like-
lihood surfaces with range compensation) of the ith array, separately.
All of the outputs and targets are likelihood surfaces with the same
dimension. N is the number of arrays. The advantage of averaging
across multiple receiver arrays is that we can enforce consistency
of peaks across all the target images, and the network will learn the
consistency across these multiple receiver arrays.

For the localization decoder, we use [2-norm loss with [, reg-
ularization to enforce the sparsity as there only exists one global
maxima in the output likelihood surface. The loss function of that
decoder can be expressed as

Liocatization = HTout - TtargetHZ + )\HToutHl (7)

where Tyt and Tiarge: are the decoder outputs and targets (target
images with negative exponential labels), respectively. A is the reg-
ularization term. The loss functions from these two decoders are
summed and back-propagated to the input. Fig. |I| (d) shows the out-
put likelihood surfaces from the localization decoder based on the
same data as Fig. [T] ().
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Fig. 3. CDF for (a) simulated data, (b) MIRD data, and generaliza-
tion experiments for (c) Base Case I and (d) Base Case I

3. EXPERIMENTS

The localization performance of SSLIDE and other baseline meth-
ods is evaluated with different levels of reverberation by using both
simulated and real RIRs. The real RIRs are from Multi-Channel
Impulse Responses Database (MIRD) [24]]. For each case, the net-
works for the learning-based methods are trained and evaluated on
both datasets.

3.1. Datasets
3.1.1. Simulated Data

Simulated RIRs are synthesized by the RIR generator [25]], which
models the reverberation using the image method [26]. The room is
8x 5 x4 m with reverberation times (R7s0) from 0.2—0.8 s and speed
of sound ¢ = 340 m/s. There are N = 3 identical ULA with array
centers (0,2.5,2), (4,0,2), and (8,2.5,2) m and K = 4 sensors in
each array with identical space 2.6 cm. To train the generalization
across space, the sources have random (x, y) on the boundary of the
room in the array plane (z = 2 m). We generate 7' = 600 RIRs with
random source positions. The sampling frequency is 16 kHz. The
input speech signal is a 1 s clean segment randomly chosen from
LibriSpeech corpus [27]. The microphone signals are obtained by
convolving the RIRs with the speech signal. White noise from the
Audio Set 28] is added to give a 35 dB signal-to-noise ratio (SNR).

3.1.2. MIRD Data

These methods are also evaluated on MIRD [24] which provides
recorded RIRs for 8-microphone ULA with spacing 8 cm for 3
RTs0s. We downsample to the audio frequency from 48 kHz to 16
kHz. All reverberation times (0.16, 0.36, and 0.61 s) are applied
to assess the localization performance. There are 2 ranges (1 and
2 m) and 13 candidate DOAs, [—90,90°] in 15° steps. The sound
source is located in one of the 26 candidate positions. We use 20
recordings with 2 s duration and half female/male voices, resulting
in T' = 520 RIRs (datapoints). The noise is generated in the same
way as simulation.



Simulated MIRD

RTso/s 20| 40 | .60 | .80 | .16 | .36 | .61
Testing 24 | .56 | .77 | 90 | 23 | .29 | .39
Ablation | .54 | 1.1 | 1.8 | 1.5 | 35 | 43 | .59

Table 1. MAE (m) of localization for testing data (first row) and
ablation study (second row).

3.2. Parameters and implementation details

SSLIDE is compared with MUSIC [_8]], SRP-PHAT [9H11]], SBL [22]
and CNN [14]. The MUSIC and SRP-PHAT are implemented by
Pyroomacoustics [29]. The spectrogram is used as input to train
the CNN for classification. We use 1° resolution for MUSIC, SRP-
PHAT and SBL in simulations and 15° for MIRD.

For CNN, based on the architecture suggested by [14], we have
M — 1 convolutional layers with kernel size 2 (M = 12 for simula-
tion and 8 for MIRD), and 64 filters per layer. Then, two fully con-
nected layers (512 units for both MIRD and simulation) are added
following the convolutional layers. To reduce overfitting, we apply
dropout (0.50 dropout rate) in output layer [[14].

For both simulated and MIRD data, we use Nppr = 256 with
no overlap for the STFT implementation, the number of snapshots
Ssim = 63 and Syrrp = 125. We only consider positive fre-
quency bins, thus F' = 128. The size for the simulation and MIRD
dataset are C's;p, = T X Sgim = 600x63 = 37,800 and Cprsrrp =
T x Smurrp = 520 x 125 = 65,000, separately. o = 0.25 (See
(3)) is chosen for generating the target likelihoods. Fig. [T](d) is one
of the targets likelihood examples with ¢ = 0.25, and we can see
that it provides a sparse likelihood surface and only a small region
of points that are near the target have significant values. For the sim-
ulations, the likelihood surface dimension is 101(Y") x 161(X), and
for MIRD 121 x 121.

The model of SSLIDE is implemented by Pytorch [30] with
learning rate 1075, batch size 32, and weight decay regularization
A =5x 107", and Adam is the optimizer with weight decay 107°.
The data is split based on 70% for training, 15% for validation and
15% for testing. The model is trained for 50 epochs.

3.3. Results and discussions

Testing Performance The cumulative distribution function (CDF)
of the localization is shown for 4 RT§os for the simulated data and
3 RTpsos for MIRD data. Fig. 3] (a) and (b) show the localization
error distribution for simulation and MIRD in the testing phase. The
localization error for ground-truth (x,y) and predicted (Z, §) loca-
tion can be expressed as e = /(% — x)2 + (§ — y)2 . The mean
absolute error (MAE) of our approach for testing data is listed in the
first row of Table[Il

Comparison with Other Baseline Methods Since we can ob-
tain the estimated coordinates of the sound sources, the DOA can
also be accessed by simple computations. The comparison of MAE
for DOA estimation with other baseline methods is in Table 2l From
Table[2] we can see that our approach outperforms all baseline meth-
ods for both the simulated and MIRD data in all levels of reverber-
ation. For the simulated data, due to the randomness of the source
positions, the localization performance of the baseline methods de-
grades significantly, especially when the sources are far from the
sensors. In contrast, our approach can still have satisfactory perfor-
mance and thus generalize across space well. For MIRD evaluation,
all of the other baseline methods leverage the prior information of
the candidate DOAs. In specific, for SRP-PHAT, MUSIC, and SBL,

RTs0/s (simulation) RTs0/s (MIRD)
Method 56T 60 [ 80 [ .16 | 36 | 61
SRP-PHAT | 14 | 21 | 25 | 25 | 13 | 16 | 19
MUSIC | 12 | 22 | 27 | 29 | 12 | 17 | 18
SBL 76 13 | 17 | 16 | 11 | 16 | 18
CNN 10 | 14 | 16 | 20 | 46 [ 80| 98
SSLIDE | 3.0 | 5.0 | 67 | 70 | 43 [ 57 | 8.1

Table 2. MAE (°) of DOA estimation for SSLIDE and other baseline
methods

.. MAE/°
Training Test Setup MAE/m SSLIDE | CNN
Base Case I Base Case 1 0.77 6.66 15.6
Base Case 1 (i) 0.93 7.85 17.6
Base Case | (ii) 0.78 6.67 16.9
Base Case II | Base Case II 0.39 8.06 9.81
Base Case II (iii) 0.45 12.0 23.9

Table 3. Generalization performance of SSLIDE and CNN

when generating the steering vectors, the distribution of DOA (—90°
to 90° in 15° steps) is used. For CNN, it also “knows” that there are
13 potential classes. Only our method does not rely on the prior
information about candidate DOAs and achieves a competitive lo-
calization performance.

Ablation Study To validate the function of multipath alleviation
decoder, we conduct ablation study which removes that decoder dur-
ing the training phase. The MAE:s for the testing data are listed in the
second row of Table Compared with the first row, we can see that
The localization error increases when that decoder is removed for all
of the cases, which verifies the role of that decoder in resolving the
multipath artifacts.

Generalization Performance First, we evaluate the generaliza-
tion under perturbations of R7o and microphone locations (see Fig.
[lc)). The model is trained with 0.6 s RTso (Base Case I) but tested
with the following two cases: (1) R0 increases to 0.7 s (ii) the same
RT¥so, but microphone spacing increases from 2.6 to 2.7 cm.

Besides, we evaluate generalization performance across differ-
ent speech for the MIRD data (See Fig. [3(d)). The model is trained
with RTso = 0.61 s and 20 speech signals (Base Case II) but tested
with (iii) 3 new recordings that are not used in training. We also com-
pare the generalization performance with CNN and list the MAEs in
Table 3] From that table, we can see that our method has a more
robust performance under the perturbations of R7so, microphone
positions, and speech signal than CNN.

4. CONCLUSIONS

We developed SSLIDE, a SSL method based on a DNN with an
encoder and two decoders which can localize the sources in a con-
tinous space. This enables the DNN to simultaneously predict the
locations of sound sources and mitigate multipath artifacts. Experi-
ments indicate our method outperforms MUSIC, SRP-PHAT, SBL,
and CNN in environments with different reverberation levels in a
continuous space. The ablation study shows the importance of mul-
tipath alleviation decoder to reduce multipath and the generalization
experiments show strong generalization abilities across space, per-
turbations of reverberation time and microphone locations, and un-
seen input recordings.
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