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ABSTRACT
This paper asks the following question: could we transform
the radios found in our personal gadgets into powerful multi-
purpose scanning devices that can detect and locate tumors,
guns, buried human bodies, a la the Star Trek Tricoder? Our
key insight is that if radios could measure the backscatter
of their own transmissions (i.e. reflections from the envi-
ronment of their transmissions), then Tricorder-style pow-
erful object detection and localization algorithms could be
realized. In this paper we focus specifically on backscatter
measurement, we describe novel circuits and algorithms that
can be added to existing radios to enable them to accurately
and concurrently receive and disentangle their own transmis-
sions’ reflections and infer its properties.
Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network Ar-
chitecture and Design—Wireless communication
General Terms: Algorithms, Design, Performance, Theory

1. INTRODUCTION
Could we use our phones to detect and locate tumors in-

side our body [14, 24] ? Could we use our phones to de-
tect and locate concealed guns? Could we use our phones
to build indoor guidance systems that can detect and locate
walls and objects? Could we use our phones to detect and
locate where people might be trapped under a rubble after
an earthquake, or where mines might be hidden under the
ground? More generally, could we turn our phones from
simple computing and communication devices into power-
ful scanning devices, a la the Star Trek Tricoder [5]?

We believe that it may be possible to add this functional-
ity (with appropriate hardware changes) to WiFi, 3G, LTE,
60GHz, etc. radios that are already present in our phones
and turn them into powerful multi-purpose scanning devices.
Further, in many cases, the scanning could be accomplished
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Figure 1: Applications of full duplex backscatter: On the left, we see how
guns reflect almost all the signal whereas the rest of the body lets it through.
We can use this to detect whether and where the gun is located, airport scan-
ners work on this principle. The same idea applies to detecting tumors since
tumor tissue reflects whereas normal tissue mostly allows signals to pass
through, the main difference is that tumors are smaller objects compared to
guns.

while these radios are being used for their regular purpose
of communication. Our key insight is that we can mine the
backscatter that radio transmissions inevitably produce for
detection and location of different objects ranging from tu-
mors to guns to bodies. Radio waves get reflected by the
environment around them and many of the reflections arrive
back at the transmitter. The strength and other spectral prop-
erties (phase) of the reflection depends on the reflecting ob-
ject. For example, biological studies have shown that tumor
tissue has higher dielectric constant than normal tissue by
factor of 5 [13, 8, 22, 15]. Similarly airport scanners work
on the principle that metal objects such as guns have higher
reflection coefficient compared to the human body as seen
in Fig. 1 (the reflection coefficient of human body and metal
differ significantly [2], i.e., metal reflects almost everything,
while the human body almost lets the entire signal through
and reflects little). In fact, expensive medical imaging equip-
ment and airport scanners use the same principle to detect
tumors and scan for security [3, 9].

However, if we could mine the backscatter of transmis-
sions from radios to accurately estimate the properties of
each reflector (the strength of the reflection, the delay ex-
perienced by the reflected signal with respect to the radio
transmitter, and the angle of arrival of the reflection), then
we could potentially build applications on top that use that
information to detect specific objects and also locate them.
For example, armed with the strength of the reflection and
the relative delay from the reflector, we can estimate what
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the dielectric properties of the reflector is, and use that to
infer the nature of the object. Further using the delay and
angle of arrival information we can potentially locate where
the reflecting object is located. Accuracy can be further im-
proved by collecting the same measurements from multiple
locations and combining them with appropriate algorithms.

The first key challenge however is detecting and measur-
ing backscatter itself. The signal that is being transmitted
leaks over to the radio’s receiver and causes a large amount
of self-interference, which could completely drown out the
backscatter [7, 19, 11, 6, 20, 10, 17, 18] because of the lim-
ited dynamic range of practical radios. Second, the differ-
ent components in the backscatter itself could act as self-
interference to each other. For example, if there is a nearby
reflector, the corresponding reflection will be strong com-
pared to a reflector that is farther out, which in some case
may be as much as 50-60dB. With such strong interference
from the nearby reflector, the weak reflection might again
get swamped out. To be able to detect all the different com-
ponents in the backscatter accurately, we need to be able to
selectively remove self-interference and measure the indi-
vidual reflections.

The second challenge is estimating the parameters of each
reflection (amplitude, delay and angle of arrival [23]) from
a signal that contains a larger number of reflections com-
bined together into one composite signal. Further, many of
the reflections could be quite closely spaced and well within
the sampling interval of the receiver. For example, we could
have two reflections that are spaced 1ns apart (or 1

2 foot apart
in distance), but with a radio with a typical sampling rate
of 40Msps, two consecutive digital samples themselves are
spaced 25ns apart. In other words, we have to get time res-
olution of much smaller values than even what our sampling
itself can provide. One naive option could be to increase the
sampling rate, for example to have 1ns resolution we need a
ADC sampling rate of 1GHz. However such high-rate ADCs
are prohibitively expensive both in terms of cost as well as
power consumption and are infeasible for most radios.

In this paper, we propose a novel technique that solves
both the problems of limited dynamic range and sampling
rates. We first propose a progressive self-interference can-
cellation technique that selectively and incrementally can-
cels each component in the backscatter, starting from the
leakage component to the first strongest reflector and so on,
to the weaker reflectors. The cancellation also benefits backscat-
ter measurement, because removing each successive com-
ponent of the backscatter improves the accuracy with which
we can estimate the remaining components (since there is
less interference, lesser number of components to estimate
and higher precision on the measurement). This succes-
sive cancellation and estimation algorithm helps us accu-
rately estimate the strength, delay and angle of arrival of
each backscatter component. Second, even if two reflections
are closely spaced in time and strength because the relative
distances from the transmitter are close, they are quite likely

to have a different spatial orientation and hence the angles of
arrival of the two reflections will be quite different. Hence
even if two reflections are within the sampling interval, we
leverage the fact that many radios have multiple antennas
that allow us to disentangle the reflections in the spatial di-
mension and accurately estimate the backscatter parameters.

In a nutshell, this paper is a first and quite preliminary
step towards realizing the vision of a Tricoder. It lays the
first building block of being able to measure backscatter, but
much work remains. We plan to research the algorithms that
can operate on these measurements to detect and locate dif-
ferent objects. We also plan to research what frequencies are
needed for different applications, for example 2.4GHz and
5GHz radios are the right frequencies for detecting large ob-
jects such as metals and human bodies, but we likely need
60GHz radios to detect small objects such as tumors. We
also plan to research the hardware implications on radio de-
sign to support such scanning capabilities. In summary, we
believe that many challenges remain and some might even
require hardware modifications, but the prospect of adding
such scanning capabilities to our personal devices and mak-
ing them cheaply and commonly available can be quite im-
pactful.
2. PROBLEM

We build up the basic problem definition for detecting and
measuring backscatter using a simple toy example as shown
in Fig.2. The text focuses on estimating delays and reflec-
tion amplitudes for brevity, but the same development can
be applied to estimating angles of arrival too. This sce-
nario has a strong and a weak reflection in the backscat-
ter at delays of τ1, τ2 respectively and the corresponding
strengths of the reflected signals are α1, α2. In other words,
if we transmitted signal x(t), the backscatter is given by
α1x(t − τ1) + α2x(t − τ2). It helps to think in terms of
the channel response which the transmitted signal has gone
through. In the above example, its a simple delayed and
attenuated reflection whose impulse response is given by
α1δ(t− τ1) + α2δ(t− τ2). Note that in practice reflections
get more attenuated as delay increases because the signal
with larger delay has travelled a longer distance.

This model is valid only when the receiving radio has in-
finite bandwidth. However, our radios have limited band-
width at the receiver, for example a typical WiFi radio in
the 2.4GHz band has 20MHz bandwidth. Conceptually this
means that the received backscatter signal can be measured
only within a bandwidth (say B) corresponding to the sam-
pling rate of the receiver. In other words the receiver acts
as a bandpass filter. So the overall channel response that
the transmitted signal has gone through before we see the
backscatter in the digital domain is given by the convolution
of the receiver filter response with the reflection impulse re-
sponse, which can be expressed mathematically as [1], h(t) =∑2
k=1 αksinc(B(t − τk)). Fig. 3 shows the overall band-

limited channel response of the composite filtered and de-
layed impulse responses. The figure also shows the individ-
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Figure 2: Multi-antenna system, receiving two backscatter reflections at
different delay, angle, and amplitude.

ual filtered response of impulses α1δ(t−τ1) and α2δ(t−τ2).
Notice how the combined channel response is similar to the
scenario where there is only a single reflection at τ1. This is
because the second reflection at τ2 is closely spaced in time
and is also very weak compared to the first reflection, and
therefore does not contribute significantly to the overall re-
sponse. The challenge therefore is to be able to accurately
resolve individual responses at τ1 and τ2 from the combined
response in scenarios where they are separated in time by
interval smaller than the sampling interval (sub-sampling).

Further, while we have used a scenario with two reflec-
tions to develop the problem, in practice the backscatter sig-
nal will have multiple reflections at various delays and at-
tenuations. So the actual impulse response of L reflection
components for an infinite bandwidth system is given by,
h∞(t) =

∑L
k=1 αkδ(t − τk). Therefore, after the reflected

signal is band-limited to bandwidth B, the overall channel
response has the following complex structure,

h(t) =

L∑
k=1

αksinc(B(t− τk)). (1)

A further complication is that the reflection coefficients ex-
hibit a heavy tailed distribution in strength shown in Fig. 4.
The strongest backscatter component is the signal that is di-
rectly leaking through from the transmit chain to the receive
chain, the next strongest backscatter component is the clos-
est first reflection and so on. Further the first few leaked
strongest components can be nearly 70-80dB stronger than
the other weak multi-path components. A typical WiFi re-
ceiver has a dynamic range of 60dB (i.e the highest ratio
between the strongest and weakest signals that can be re-
ceived without significant distortion of the weakest signal).
Consequently, the strong backscatter components can quite
easily drown out the weaker backscatter components. In
summary, our goal is to determine all the attenuations α,
delays τ , (and also the angle of arrivals (AoA) θ, though
we omit it from the equation below for brevity) of the indi-
vidual backscatter components accurately from the sampled,
band-limited backscatter despite the limited dynamic range
and finite bandwidth of commodity radios. The discrete time
version of the impulse response can be written as,

h[n] =
L∑
k=1

αksinc(B(nTs − τk)). (2)

This model is valid for a single transceiver, we will refine

Figure 3: The original reflections from the environment are closely located
impulses. After going through the band-limited receiver, the impulses get
converted to sinc functions, and the overall response is the sum of the two
sincs. Note how similar the overall response looks to the sinc correspond-
ing to the strong reflection, and this is the reason two closely spaced reflec-
tions are hard to disentangle.

this model further to include AoA for a MIMO system in
Sec. 3.3.

3. DESIGN
Our design provides accurate backscatter measurement with

commodity radios by designing two novel techniques to tackle
the limitations of low dynamic range and finite bandwidth
available in commodity radios. Before we describe them in
detail, we first set up the basic measurement problem and
describe how we solve it. The algorithm starts by mea-
suring the overall channel response that the backscatter has
gone through. This is classic channel estimation that ev-
ery receiver performs [1]. We omit the details here, but the
rest of this paper will assume that we know the h[n], where
y[n] = x[n]∗h[n]. Note that this h[n] is the composite over-
all response, but our goal is to break it down into the form
where we can tease out the individual τi, αi, θi values corre-
sponding to each of the reflections that make up the overall
backscatter channel. More formally, from the previous sec-
tion we can show that the goal is to deconstruct the h[n] as
given in Eqn. 3.

If we can find the solution, we will have found all the
parameters of the backscatter. The above problem is non-
linear because the sinc terms in the optimization problem
are non-linear. Further, the problem is not convex. So our
basic approach is to solve this problem piece-wise. In other
words, we focus on a small region in the variable space
δτ, δα, δθ, approximate the sinc functions in that region by
straight lines, and solve the resulting convex optimization
problem. We then compare the residual error and repeat un-
til successive iterations of the algorithm does not reduce the
error any further. Similar work on deconstruction of contin-
uous time channel model have been done in [16], but the
problem that we are trying to tackle takes the finite band-
width and the discrete time nature of the channel response
into consideration.
3.1 Tackling Limited Dynamic Range

The challenge is that some of the reflections in the backscat-
ter may be significantly stronger than others. For exam-
ple if there is a reflector 10cm away from the transmitter
and another 10m away, the difference in signal strengths of
these two components can be as high as 60dB. Commodity
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Figure 4: Limited dynamic range of transceiver and the result of Progressive
interference cancellation (PIC) algorithm.

WiFi radios have a typical dynamic range of 60dB, which
would imply that the weaker reflection would get completely
buried. Second, even if the weaker reflection is within the
dynamic range, its not being represented with many bits and
hence there is higher quantization noise. While the strong
components can be estimated reasonably accurately, the weaker
components cannot be and inevitably this leads to inaccurate
backscatter parameter estimation.

Our key insight here is that accuracy can be improved if
we can progressively remove the strongest backscatter com-
ponent and allow the estimation algorithm to operate on the
remaining components as shown in Fig. 4. By removing
the stronger component, the receivers dynamic range can be
used to sample the weaker components with higher resolu-
tion and thus prevent them from being washed out or dis-
torted. Once these are estimated, remove the strongest re-
maining component and run the estimation algorithm on the
remaining backscatter signal. The algorithm recursively re-
peats until all components are estimated. More intuitively,
we are progressively canceling strong backscatter compo-
nents and improving the accuracy of estimation for the re-
maining components.

The challenge therefore is to selectively eliminate backscat-
ter components by canceling them. Further the cancellation
has to be implemented in analog before the receiver, since
otherwise dynamic range will again be limited. To imple-
ment this, we build on prior work in self-interference can-
cellation and full duplex [7]. We reuse the analog cancella-
tion circuit design proposed in this prior work. However we
make one key contribution. The goal of the prior work was
to cancel as much of the self-interference (or backscatter) as
possible. Our goal is to be selective and progressive, i.e. can-
cel the backscatter components in a controlled manner one
by one. To accomplish this we build on the same estimation
algorithm described above. We use the initial estimates to
find a coarse estimate of where the strong backscatter com-
ponents are located. We then tune the analog cancellation
circuit to only cancel these components by controlling the
delay taps in the circuit to straddle the delay of these strong

components. After running the estimation algorithm on the
remaining backscatter signal, we retune the analog cancel-
lation to cancel the next strongest component and repeat the
process. We will refer to this cancellation block as Progres-
sive self-Interference Cancellation (PIC) in rest of the paper.

Note that analog cancellation can achieve a maximum of
70dB of cancellation, so we cannot keep progressively can-
celing backscatter beyond a particular level. However af-
ter such cancellation, assuming a receiver dynamic range of
at least 60dB, we can easily estimate the remaining com-
ponents. Further, we can repeat the same cancel and esti-
mate procedure in digital by selectively canceling the resid-
ual backscatter components using the digital cancellation al-
gorithm described in [7].

3.2 Tackling Limited Sampling Resolution
The second challenge is that commodity radios have lim-

ited sampling rates since having extremely high sampling
rates is prohibitively power hungry [21]. As we saw in Fig. 3,
the limited bandwidth creates a complex response which is
a sum of shifted sinc functions. Further, the width of the
sinc increases with decreasing bandwidth. Consequently,
the ability to estimate the actual delay and amplitude of the
backscatter reflections also reduces. This problem is worse
when there are multiple reflections that are within the sam-
pling period. For example, for a 40Msps, the sampling reso-
lution is 25ns. But 25ns corresponds to a distance separation
of 25 feet, and we could easily have two backscatter reflec-
tions within 25 feet. Can we tease apart such close backscat-
ter components when we are not even getting digital samples
that are closely spaced enough?

In general, the closely spaced reflections lead to a degen-
erate system of equations. For example, when the reflec-
tions at two delays τ1 and τ2 are closely spaced, the differ-
ence in sample values of the corresponding sinc functions
are very small and therefore the observations are highly cor-
related. As more reflections are closely spaced within a sam-
pling period, the problem of uniquely reconstituting them
becomes more difficult. Consequently, reconstruction error
increases since the optimization algorithm struggles to find
a good fit. In practice, we found that even if there were two
very closely spaced reflectors in time (i.e. the relative delays
from the transmitter to the two reflectors were within a sam-
pling period of each other), they could still be deconstructed
accurately as long as their spatial orientations relative to the
transmitter are different (i.e. their backscatters have differ-
ent AoAs). However closely spaced backscatter reflections
in both space and time are harder to disentangle.

To tackle this problem, we take advantage of the spatial
dimension. For example, if the radio has four antennas and
the two closely spaced reflections are arriving at angles θ1
and θ2 respectively, then the two reflections can be distin-
guished in the spatial dimension because they will exhibit
different phases at the different antennas. The reason is that
because of the different angles of arrival, the two reflections
will travel different distances which translates to a phase dif-
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ference across successive antennas. By incorporating this
constraint into the optimization problem, we can disentan-
gle closely spaced reflections within a single sampling pe-
riod. In practice we find that with 4 antennas (expected to
be found in the next generation WiFi radios), we can dis-
tinguish up to 4 closely spaced reflections within a single
sampling period. In effect we get the same performance as
an ADC that has four times the sampling bandwidth while
still using cheap commodity radios.
3.3 Formal Algorithm

In this section we provide a brief description of the formal
mathematical model, problem and our algorithm. The com-
posite backscatter channel as seen by the mth receiver in the
MIMO antenna array can be modeled as,
hm[n] =

∑
k

αke
i(νk+γmk) sinc(B(nTs − (τk +

γmk
2πfc

)))

(3)
,where γmk = 2π

λ (m − 1)d sin θk is the added phase shift
experienced by the kth reflection at the mth receiver relative
to the first receiver when the reflected signal arrives back at
θk AoA, αkeiνk is the complex attenuation for the kth reflec-
tion, and τk is its corresponding delay. The constant fc is the
carrier frequency with wavelength of λ, and d is the distance
between the successive receiving antennas in the array. The-
oretically hm[n] can be of infinite length, but in practice the
sinc function decays to very small values for large values of
n. Thus the channel can be modeled by a finite length vector
with n taking value in the range of [−N,N ].

As discussed before, the composite finite-length linear chan-
nel hm[n] can be estimated by deconvolving the received
samples with known preamble samples. Once the composite
linear channel has been estimated, we can estimate the pa-
rameters of the constituent backscatter components by solv-
ing the following optimization problem.

minimize
∑
m

∑
n ‖hm[n]− h̃m[n]‖2

subject to τk ≥ 0, αk ≤ 1,

θk ∈ [−π2 ,
π
2 ], νk ∈ [0, 2π],

k = {1, . . . , L}, n = {−N, . . . , N},
m = {1, . . . ,M}

(4)

,where h̃ is the estimated linear channel response obtained
by the deconvolution of received samples with a know pream-
ble, M is the number of antennas in the array, and L is the
total number of reflected backscatter components.

This optimization problem is non-convex and is not known
to have a global solution. Instead, we solve this problem ap-
proximately by finding a locally optimal solution. To this
end we use a heuristic known as Sequential Convex Pro-
gramming (SCP) [4], where all the non-convex functions are
replaced by their convex approximation and then we solve
the resulting convex problem in an iterative manner until
a reasonable solution is achieved. One simple approach to
convert (4) into a convex problem is to approximate (3)
by a linear function. We have followed this approach in
this paper, it has to be noted however that a more sophis-

ticated convex-approximation of (3) could potentially result
in better overall accuracy of estimation. Due to the lim-

1: Begin in the first time window w0

2: Estimate parameters α, τ, θ for reflectors in window w0 by solving the
optimization problem given by Eqn. 4

3: repeat
4: Pass the estimated parameters of all reflectors in the past windows

wp−1 . . . w0 to analog PIC block for cancellation
5: Estimate parameters α, τ, θ for reflectors in the current window wp by

solving the optimization problem given by Eqn. 4
6: Advance window to wp+1

7: until Parameters for reflectors in the last window wP has been estimated by
forward estimation

Algorithm 1: Progressive steps in backscatter channel pa-
rameters estimation

ited dynamic range of the ADC used in the receiver, stronger
backscatter components mask the weaker ones. In the initial
step, the algorithm finds the parameters corresponding to the
strong backscatter components and then passes that informa-
tion to the progressive self-interference cancellation (PIC)
block. The PIC block will cancel these reflections, which
will allow the receiver AGC to increase gain for the weak
backscatter components which can now become detectable
due to the cancellation of the strong reflections. We can then
run the estimation algorithm again to estimate the parame-
ters of the weak components and send back that information
to PIC for further cancellation.

Usually the strength of the backscatter components are
weaker for larger values of the delay τ . Hence we can run
the estimation algorithm by partitioning the range for the
variable τ into several non-overlapping windows. The al-
gorithm begins by estimating parameters for the reflections
in the first time window then passes that information to the
PIC. After the cancellation of these components advance the
window one step into the future and then estimate the pa-
rameters in that range and pass that information to PIC for
cancellation. This process can repeat multiple times until all
the backscatter components have been detected in the for-
ward time direction. We can set a reasonably high value
of τ beyond which the backscatter components present are
very weak; this maximum value depends on the application
and the environment [12]. The major steps in this estimation
process are described in the Algorithm 1 .

4. PRELIMINARY EVALUATION
In this section we present preliminary results to show that

accurate backscatter measurement is possible using future
commodity radios. First, we show via a hardware implemen-
tation on off-the-shelf WARP radios that progressive cancel-
lation is possible. Next we show via realistic simulations
in matlab that backscatter can be measured accurately us-
ing our parameter estimation algorithm in conjunction with
progressive self-interference cancellation. We use simula-
tion because it is otherwise hard to test the accuracy, as we
have no way of knowing ground truth with a hardware ex-
periment.
Progressive Self-Interference Cancellation: We created an
emulated backscatter setup with WARP hardware with three
reflection components. We use a standard OFDM baseband
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(a) CDF of accuracy of our estimation al-
gorithm for delay parameter τ .
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(b) CDF of accuracy of our estimation al-
gorithm for the amplitude of the reflec-
tions α.
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(c) CDF of accuracy of our estimation al-
gorithm for AoA of the different reflec-
tions θ.

Figure 5: Performance of algorithm.

Figure 6: Frequency domain view of progressive self-interference cancella-
tion of three strong backscatter components.

with 20MHz bandwidth to create the transmitted signal. Next,
we split the signal at the TX output of the WARP radio
into three wires of different lengths to emulate a multipath
backscatter signal with increasing delays and attenuations.

The goal is to show that we can tune our analog cancella-
tion circuit to only cancel the first component and leave the
other two components alone. We use our estimation algo-
rithm to compute the coarse delay experienced by the first
component. We use this delay estimate to tune our analog
cancellation circuit to cancel the self-interference signal lo-
cated around that estimated coarse delay. Fig. 6 shows the
results before and after progressive cancellation.

The composite backscatter signal is made up of three strong
reflections in addition to several smaller reflections. After
the first step of progressive self-interference cancellation, the
first component is significantly reduced, while the other two
strong components with higher delays are hardly affected.
Next, we use the same algorithm to also cancel the second
component and preserve only the third component. Notice
also that the first and second components are close in ampli-
tude and delay (in fact the delay difference is within the sam-
pling interval), yet the technique is able to selectively cancel
the first and second reflections one after the other and leave
the last one alone. A subsequent analog cancellation step al-
lows us to cancel the three strongest backscatter components

and that also hits the limit of what analog cancellation is ca-
pable of (70dB). However, the same technique (PIC) can be
applied to cancel the remaining backscatter components pro-
gressively via digital cancellation. The digital cancellation
step improves estimation accuracy, but does not improve the
dynamic range.
Overall Accuracy: We turn to matlab simulation to check
overall accuracy of our estimation algorithm with PIC. To
simulate cancellation we assume that after the strongest backscat-
ter component is coarsely estimated, it can be cancelled out.
The simulation assumes 4 antenna system, with the sam-
pling rate of 40Msps (so the sampling period is 25ns). The
backscatter channel has 4 and 6 reflections, where upto 3 re-
flections could be spaced within the sampling period of 25ns.
We apply the estimation and PIC in an iterative fashion as
described in Algorithm 1. The CDF of the estimation for the
parameters α, τ , and θ are shown in figure (5a), (5c), (5b).

As we can see, we achieve a median accuracy of 0.4ns for
the backscatter delays in spite of having a sampling period
of 25ns. Similarly we have 1% accuracy in estimating the
strength of the backscatter reflections, and a median accu-
racy of angle of arrival estimation of 0.5 degrees. With such
accuracy, we could probably detect the object type with high
accuracy since dielectric properties differ vastly for different
objects.

5. CONCLUSION
This paper presents the first step in our research agenda to

turn everyday commodity radios into powerful multi-purpose
scanning devices. We show how by collecting, measuring
and mining the natural backscatter than happens when radios
transmit, we can potentially detect and locate objects with
high accuracy. We show how we can build on prior work
in self-interference cancellation to enable commodity radios
to clean measure backscatter and estimate its properties. We
are currently working on improving these algorithms as well
as designing medical and security applications that take ad-
vantage of the backscatter measurements for tumor and gun
detection.
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