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Sampling Training Data for Continual Learning
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Abstract—Today’s robotic fleets are increasingly measuring
high-volume video and LIDAR sensory streams, which can
be mined for valuable training data, such as rare scenes of
road construction sites, to steadily improve robotic perception
models. However, re-training perception models on growing
volumes of rich sensory data in central compute servers (or the
“cloud”) places an enormous time and cost burden on network
transfer, cloud storage, human annotation, and cloud computing
resources. Hence, we introduce HARVESTNET, an intelligent
sampling algorithm that resides on-board a robot and reduces
system bottlenecks by only storing rare, useful events to steadily
improve perception models re-trained in the cloud. HARVESTNET
significantly improves the accuracy of machine-learning models
on our novel dataset of road construction sites, field testing of
self-driving cars, and streaming face recognition, while reducing
cloud storage, dataset annotation time, and cloud compute time
by between 65.7 — 81.3%. Further, it is between 1.05 — 2.58 %
more accurate than baseline algorithms and scalably runs on
embedded deep learning hardware.

I. INTRODUCTION

Learning to identify rare events, such as traffic disrup-
tions due to construction or hazardous weather conditions,
can significantly improve the safety of robotic perception
and decision-making models. While performing their primary
tasks, fleets of future robots, ranging from delivery drones to
self-driving cars, can passively collect rare training data they
happen to observe from their high-volume video and LIDAR
sensory streams. As such, we envision that robotic fleets will
act as distributed, passive sensors that collect valuable training
data to steadily improve the robotic autonomy stack.

Despite the benefits of continually improving robotic mod-
els from field data, they come with severe systems costs that
are largely under-appreciated in today’s robotics literature.
Specifically, these systems bottlenecks (shown in Fig. [T) stem
from the time or cost of (1) network data transfer to compute
servers, (2) limited robot and cloud storage, (3) dataset anno-
tation with human supervision, and (4) cloud computing for
training models on massive datasets. Indeed, it is estimated that
a single self-driving car will produce upwards of 4 Terabytes
(TB) of LIDAR and video data per day [l 9], which we
contrast with our own calculations in Section [[Il
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Fig. 1: The Robot Sensory Sampling Problem. What are
the minimal set of “interesting” training samples robots can
send to the cloud to periodically improve perception model
accuracy while minimizing system costs of network transfer,
cloud storage, human annotation, and cloud-computing?

In this paper, we introduce a novel Robot Sensory Sampling
Problem (Fig. |I|), which asks how a robot can maximally
improve model accuracy via cloud re-training, but with min-
imal end-to-end systems costs. To address this problem, we
introduce HARVESTNET, a compute-efficient sampler that
scalably runs on even resource-constrained robots and reduces
systems bottlenecks by “harvesting” only task-relevant training
examples for cloud processing.

In general, the problem of intelligently sampling useful or
anomalous training data is of extremely wide scope, since field
robotic data contains both known weakpoints of a model as
well as unknown weakpoints that have yet to even be discov-
ered. A concrete example of a known weakpoint is shown
in Fig. Pl where a fleet operator identifies that construction
sites are common errors of a perception model and wishes
to collect more of such images, perhaps because they are
insufficiently represented in a training dataset. In contrast,
unknown weakpoints could be rare visual concepts that are
not even anticipated by a roboticist.

To provide a focused contribution, this paper addresses
the problem of how robotic fleets can source more training
data for known weakpoints to maximize model accuracy, but
with minimal end-to-end systems costs. Though of tractable
scope, this problem is still extremely challenging since a
robot must harvest rare, task-relevant training examples from
growing volumes of robotic sensory data. A principal benefit



of addressing known model weakpoints is that the cloud can
directly use knowledge of task-relevant image classes, which
require more training data, to guide and improve a robot’s
sampling process. Our key technical insight is to keep robot
sampling logic simple, but to leverage the power of the cloud
to continually re-train models and annotate uncertain images
with a human-in-the-loop, thereby using cloud feedback to
direct robotic sampling. Moreover, we discuss how insights
from HARVESTNET can be extended to collecting training data
for unknown weakpoints in future work.

Literature Review: HARVESTNET is closely aligned with
cloud robotics , where robots send video or LIDAR
to the cloud to query compute-intensive models or databases
when they are uncertain. Robots can face significant network
congestion while transmitting high-datarate sensory streams
to the cloud, leading to work that selectively offloads only
uncertain samples or uses low-latency “fog computing”
nodes for object manipulation and tele-operation 28].
As opposed to focusing solely on network latency for real-
time control, HARVESTNET addresses overall system cost
(from network transfer to human annotation time) and instead
focuses on the open problem of continual learning from
cleverly-sampled batches of field data.

Our work is inspired by traditional active learning [29, 24}
[16]], novelty detection [20), [12], and few-shot learning
[30, 22]], but differs significantly since we use novel compute-
efficient algorithms, distributed between the robot and cloud,
that are scalable to run on even resource-constrained robots.
Many active learning algorithms [29], 24, [14] use compute-
intensive acquisition functions to decide which limited samples
a learner should label to maximize model accuracy, which
often involve Monte Carlo Sampling to estimate uncertainty
over a new image. Indeed, the most similar work to ours [16]
uses Bayesian Deep Neural Networks (DNNs), which have a
distribution over model parameters, to take several stochastic
forward passes of a neural network to empirically quantify
uncertainty and decide whether an image should be labeled.
Such methods are infeasible for resource-constrained robots,
which might not have the time to take several forward passes
of a DNN for a single image or capability to efficiently run
a distribution over model parameters. Indeed, we show in
Section [V|how our sampler uses a hardware DNN accelerator,
specifically the Google Edge Tensor Processing Unit (TPU),
to evaluate an on-board vision DNN, with one fixed set of
pre-compiled model parameters, in < 16ms and decides to
sample an image in only ~ 0.3ms! More broadly, our work
differs since we (1) address sensory streams (as opposed to
a pool of unlabeled data), (2) use a compute-efficient model
to guide sampling, (3) direct sampling with task-relevant
cloud feedback, and (4) also address storage, network, and
computing costs.

Statement of Contributions: In light of prior work, our con-
tributions are four-fold. First, we collect months of novel video
footage to quantify the systems bottlenecks of processing
growing sensory data. Second, we empirically show that large
improvements in perception model accuracy can be realized by

automatically sampling task-relevant training examples from
vast sensory streams. Third, we design a sampler that intelli-
gently delegates compute-intensive tasks to the cloud, such as
adaptively tuning key parameters of robot sampling policies
via cloud feedback. Finally, we show that our perception
models run efficiently on the state-of-the-art Google Edge TPU
for resource-constrained robots.

Organization: This paper is organized as follows. Section
motivates the Robot Sensory Sampling Problem by quantifying
our system costs for collecting three novel perception datasets.
Then, Section [[T]] formulates a general sampling problem and
introduces the HARVESTNET system architecture (Fig. [3).
Next, Sections [[V] and [V] quantify HARVESTNET’s accuracy
improvements for perception models, key reductions in system
bottlenecks, and performance on the Edge TPU [7]. Finally,
we conclude with future applications in Section [V1]

Fig. 2: HARVESTNET Re-Trained Vision Models. From only
a minimal set of training examples, HARVESTNET adapts
default vision models trained on the standard COCO dataset
[19] (top images) to better, domain-specific models (bottom
images). We flexibly fine-tune mobile-optimized models, such
as MobileNet 2, as well as compute-intensive, but more
accurate models such as Faster R-CNN [21]].

II. MOTIVATION

We now describe the costs and benefits of continual learning
in the cloud by collecting and processing three novel percep-
tion datasets.

A. Costs and Benefits of Continual Learning in the Cloud

Benefits: A prime benefit of continual learning in the
cloud is to correct weak points of existing models or specialize
them to new domains. As shown in Fig. 2] (right, top), stan-
dard, publicly-available vision deep neural networks (DNNs)
pre-trained on benchmark datasets like MS-COCO [19] can
misclassify traffic cones as humans but also miss the large
excavator vehicle, which neither looks like a standard truck
nor a car. However, as shown in Fig. |Z| (right, bottom), a
specialized model re-trained in the cloud using automatically
sampled, task-relevant field data can correct such errors.
More generally, field robots that “crowd-source” interesting



Bottleneck Multi-Sensor Dashcam-ours

B. Box Mask B. Box Mask
Storage $31,200 $31,200 $172.50 $172.50
Transfer Time (hr) 8.88 8.88 0.05 0.05
Annotation Cost $95,256 $1,652,400 $15,876 $275,400
Annot. Time (days) | 22 NA 18 NA

TABLE I: Systems Costs: Monthly storage/annotation cost
and daily network upload time are significant for self-driving
car data even if we annotate /% of video frames.

or anomalous training data could automatically update high-
definition (HD) road maps.

Costs: The above benefits of cloud re-training, however,
often come with understated costs, which we now quantify.
Table [T estimates monthly systems costs for a small fleet of 10
self-driving cars, each of which is assumed to capture 4 hours
of driving data per day. In the first scenario, called “Dashcam-
ours”, we assume a single car has only one dashcam capturing
H.264 compressed video, as in our collected dataset. In the
second scenario, called “Multi-Sensor”, we base our calcula-
tions off of an Intel report [1]] that estimates each SDV will
generate 4 TB of video and LIDAR data in just 1.5 hours.

To be conservative, we assumed all field data is uploaded
over fast 10 Gbps ethernet, which might be realistic for
SDVs, but is much slower for network-limited robots. Most
importantly, we assume only 1% of image data is interesting
and needs to be annotated, specifically by the state-of-the-art
Google Data Labeling service [4], which has standard rates for
object detection bounding boxes and (costlier) segmentation
masks (referred to as “B. Box” and “Mask™ in Table [[).
Further, to roughly estimate annotation time, we hand-labeled
1000 bounding boxes in 1.4 hours. Since we did not hand-
label nor train perception models for semantic segmentation,
the time estimates are marked as “NA”. Though conservative,
our estimates, which are further detailed in supplementary
information, show significant costs, especially for annotation.
Indeed, we confirmed the sampling problem’s relevance by
talking with robotics startups that face high systems costs.

B. Novel Datasets we Collected

To quantify systems costs first-hand, we collected over three
months of field data, comprising over 10 GB of compressed
video clips from a dashboard iPhone 6 camera (“dashcam”).
While modest in size, it contains 346,788 frames of video,
which is challenging to automatically mine for training exam-
ples. The following datasets, as well as re-trained vision mod-
els, are available at https://sites.google.com/view/harvestnet:
1. Identifying Construction Sites: Our three months of con-
struction footage shows safety-critical scenarios and model
drift, including roads that were first excavated by tractors (Fig.
E]), filled with tar, and rolled back to normal by “compactor”
machines and human workers.

2. ldentifying Self-driving Vehicles (SDVs): We captured rare
footage of SDVs being tested on public roads over 3 months,
predominantly of the Waymo van (Fig. 2). This example is a
proof-of-concept of HARVESTNET’s ability to sift rare, task-

relevant training samples from large volumes of regular car
footage, and is easily generalizable to other image classes.

3. Streaming Face Recognition (FaceNet): To test HARVEST-
NET’s robustness to domains outside of road scenes, we use
a video dataset of streaming faces of consenting volunteers
from a prior robotics paper [13]. We expressly do not advocate
privacy-infringing surveillance missions, and simply test a
search-and-rescue scenario where a sampler must use face
embeddings, such as from the de-facto FaceNet [23| [11] DNN,
to sift faces of interest from large volumes of video. Our
results on all three datasets, henceforth referred to as Waymo,
Construction, and FaceNet, are shown in Section

III. PROBLEM STATEMENT
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Fig. 3: System Architecture: Our core contribution is a robot
sensory sampler in green, which uses predictions from an on-
board vision DNN and cloud-selected image targets.

We now formulate a general Robot Sensory Sampling
Problem that is applicable to diverse field robots. Examples
include self-driving cars, low-power drones, and even mining
robots which might only have network access when they
surface. As a common theme, these robots must prioritize
sensory samples due to limits in some combination of on-
board storage, network connectivity, human annotation, and/or
cloud-computing time that preclude naively using all field data.
We now define general abstractions for the sampling problem.
1. Sensory Input: A robot measures a stream of sensory inputs
{z*}L,, where each x" is a new image or LIDAR point
cloud, on a day or learning “round” 7. At the end of a day’s
horizon of T' steps, it can upload samples to the cloud for
downstream annotation and model learning. In practice, time
horizon T' can be the duration of a day’s field test when a
subterranean robot surfaces and connects to a network. Since
the robot is caching images for model-learning, as opposed
to real-time control, it can sub-sample the sensory input at a

sustainable rate, such as At = 30s, by skipping frames.
2. Robot Perception Models: Vision DNN fpnn maps an im-

age z° to a prediction ¢ (e.g. image class or object detections)
and associated confidence conf?, typically from softmax lay-
ers in the DNN. Further, the DNN also provides embeddings
emb?, which can be used to compare the similarity between
images as shown in Fig. [ (right). The DNN outputs a vector
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of predictions, confidences, and embeddings, defined as:
yt = [gjt, conft,embt] = fDNN(mt). ))

We denote the perception DNN learned after round i as f{ x>
where fyy is the initial DNN the robot is equipped with
before re-training. Our goal is to make fjy\y as accurate as
possible for increasing ¢ with the fewest samples sent to the
cloud. Fixed model f{\y is not re-trained within a round i of
sample collection since the samples must first be annotated.
3. Target Image Set: As stated in the introduction, the scope
of this paper is to collect more examples of known weakpoints
of a model, such as the mis-labeled construction sites in Fig.
[l In practice, these weakpoints, which we refer to as task-
relevant image classes, can be identified by a fleet operator
who might nightly review model performance on historical
data. The set of task-relevant image classes, such as traffic
cones, excavators, and LIDAR units (Fig. , are denoted by
TargetClassSet. Importantly, we assume the cloud has a few
initial examples of images belonging to TargetClassSet,
denoted as TargetImageSet. This is a practical assumption,
since TargetImageSet can be obtained from a few examples
of mis-labeled field data, like Fig. [2 that initially prompted
the problem, or even collated from Google Images. Equally
importantly, the cloud dataset can already have sufficient
training data for well-understood scenes from previous field
tests or public datasets like ImageNet [15], to ensure model
performance does not degrade on such data.

4. Sampling Policy: Our goal is to develop a lightweight
sampling policy Tgample (green unit in Fig. that decides
whether or not to store a new image z* based on predictions
from the on-board perception DNN y' = fi((z') and the
desired target-set TargetClassSet of images to look for:

at = Wsat,,ple(mi, yt, TargetClassSet, anmpler), 2)
where Giampler are sampler hyper-parameters that, in general,
can be adapted per round i. Here, a’ = 1 indicates storing the
image to later send to the cloud and a’ = 0 indicates dropping
it, such as for common, well-understood scenes. Ideally, to
work on resource-constrained robots as well as not interfere
with real-time decision-making, Tsample s logic, including use
of hyper-parameters Q;amplcr, should be compute-efficient.

5. Limited Robot Sample Cache: In round i, the robot saves
sampled images in a small cache denoted by Cache’ =
{xT}iV;%C“e, where 0 < 7 < T. These images, limited by a
size Neache < T, are small enough to store on-board a robot
and will be uploaded to the cloud at the end of round .

6. Annotated Cloud Dataset: When samples in Cache’ are
uploaded to the cloud, a human, or trusted machine, provides
ground-truth annotations yf, . ... for the selected images,
which could be different from the robot’s predictions *. In
the cloud, we store a dataset D* = {27,y } that grows with
rounds ¢ and comprises images " and ground-truth labels y":

Di = Diil u {(xT7yéroundTruth) ) VxT € CaChei}- (3)

Initial dataset D has very few examples of the target images
that we care for, such as self-driving cars or road disruptions.

However, initial dataset D° can be seeded with a large set of
“common” training examples, such as from ImageNet [15]]. In
the cloud, we split full dataset D* into train, validation, and
test components denoted by D .. , D! ., and Di .

7. Independent Test Dataset Dyest, fnal: Model accuracy is al-
ways reported on an independent, held-out test set denoted
Diest, final. To accurately assess the efficacy of a sampler
in accruing fask-relevant data that yields steady performance
gains on the target classes, Diest, final Should have sufficient
representation, or even be biased towards, target classes.
The rest of the images can come from cloud datasets like
ImageNet, if we wish to ensure performance does not degrade
on these classes. In the extreme case where we only desire
a specialized model, such as for road scene classes only,
Diest, final can also fully contain only target class images.

In practice, Diest, inal can be sourced from designated
robots in a fleet tasked with collecting only test data. If special
test robots are scarce, Diegt, final Can be accumulated from a
random subset of data annotated by a human per round <. In
both scenarios, we ensure test data is independently verified

by annotators and never used for training.

8. Model Re-training and Evaluation: Once the new anno-
tated cache Cache’ is added to the dataset D!, model re-
training function getrain takes current robot model f]gNN and
the updated annotated dataset D! and outputs an updated
model fg&lN. The training objective is to minimize loss
function £(3", Y&, oundmruen) PENalizing prediction errors, such
as the standard cross-entropy loss for image classification
or mean average precision (mAP) for object detection [6].
Then, evaluation function gevaluate quantifies the accuracy
improvements of newly trained model fj5\\ given a validation
dataset, Df,al, or test set Diegt, final- The model re-train and
evaluation functions are denoted by:

i+1 7 i+1
b € Gretrain (fox, Dirain) @)
[rl = gevaluate(f]lDNN7 Dtest, ﬁnal)- (5)

Finally, new model f5{ is downloaded back to the robot
over a network link. Vision DNN models are typically less than
a few GB, which are very small, in contrast to raw sensory

data, to download daily even over bandwidth-limited networks.

A. The Robot Sensory Sampling Problem (Fig.

We now formally define the abstract sampling problem.

Problem 1 (Robot Sensory Sampling Problem): Given a
target set of image classes TargetClassSet, initial cloud
dataset D, and initial robot model f3yy. find the best
sampling policy 77, ;. that minimizes full held-out test set

10SS Diest, final for the final robot DNN f]év]{ﬁ{}“d trained over
Nrouna days:

Nroun

7T:ample S argminll( DNN d7Dtest, ﬁnal)7 ©6)

Tsample
subject to the constraint that a robot can only sample Ncache
images daily.
Sampling Problem Complexity: Deriving an optimal sam-
pling policy that solves Problem [I] is extremely challenging
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Fig. 4: Empirical insights guiding HARVESTNET: (Left) For
relatively static targets, classification test accuracy saturates
with more images used to fine-tune a vision DNN. (Right) We
use either embedding distances or softmax confidence scores
to signal if a new image is likely a target of interest.

for several reasons. First, it is hard to analytically model
the sequence of high-dimensional sensory inputs {z%'}1_; a
robot can possibly measure on a day ¢. Second, even if such
an observation model exists, it is extremely challenging to
decide which limited subset of Nc,che Samples, chosen from
T possibilities, will lead to the best model performance of a
complex DNN evaluated on a final test-set at the end of several
rounds N;ouna. Indeed, even for a small drone that measures
video for only 15 minutes at a slow frame-rate of 5 frames per
second with a cache of Nache = 2000 daily images, there is
a combinatorial explosion of (,,© ) = 4.21 x 101*%" images

cache

to choose from for downstream model learning!

Wide Practicality of the Sensory Sampling Problem:
Despite its complexity, the sampling problem is built on
simple, but general, abstractions of (a) a robot perception
model, (b) limited on-board storage, (c) occasional network
access to upload samples, and (d) centralized annotation and
compute resources. These abstractions apply to a wide variety
of robots where the rate of sensory measurements outpaces
that of human annotation and downstream cloud processing.

IV. THE HARVESTNET INTELLIGENT SAMPLER

While obtaining a provably optimal solution to Problem
[ is infeasible, one can envision a myriad of possibly well-
performing heuristics. To ensure HARVESTNET applies to a
wide diversity of robots, we enforce a practical requirement -
the sampler should be sufficiently compute-efficient to run on
even a resource-constrained robot, equipped with, for example,
a Raspberry Pi and Google Edge TPU as shown in Fig. [§]
A minimalistic on-board sampler that does not interfere with
real-time control is extremely useful for larger robots as well,
such as SDVs. We now describe three empirical insights,
evidenced in Fig. ] that constrain the sampler design space
and directly lead to HARVESTNET.

A. Empirical Insights Behind the HARVESTNET Sampler

Insight 1: Use transfer learning for high model accuracy with
few sampled images.
Many pre-trained CNNs’ initial network layers serve as
general-purpose feature extractors that yield finite-dimension
embeddings [25, (31, 2]. Embeddings can be used to fine-
tune final linear classification or object detection layers to
recognize new classes of interest, such as autonomous cars or
construction sites, that a CNN was not initially trained upon.
HARVESTNET exploits fine-tuning by our empirical ob-
servation that only a limited set of images are necessary to
adapt a pre-trained vision DNN to new domains, especially
if the new domains’ data does not change much with time.
Fig. [ (left) shows the full dataset test accuracy of our
three separate datasets (y-axis) versus the percentage of total
training data provided to the learning model (x-axis). Clearly,
for the relatively static Waymo and FaceNet domains, the final
model accuracy saturates as more training images are acquired.
In contrast, for the dynamic task of identifying construction
sites, the accuracy steadily increases as more data is acquired,
even after months of data. This is because construction sites
are constantly changing, with new tractors and signs being up-
dated daily. Indeed, HARVESTNET can be used for continual
re-training, allowing robots to update HD maps in the cloud.
Insight 2: Filter task-relevant target images using DNN
embeddings and softmax confidences.

Embedding distances: Many, but not all, CNNs have the
property that the Lo distance between embeddings of two
images is a proxy for image similarity. In particular, FaceNet
DNN embeddings typically have a lower embedding-distance
for two pictures of the same person than unrelated faces, since
the DNN is optimized with a triplet loss [11, 23]]. We test
this property with our FaceNet data in Fig. ] (right), allowing
HARVESTNET to exploit embedding distance as a valuable
indication of whether a new image is of the same desired
class as training data we wish to acquire.

Softmax confidence thresholds: Softmax confidence
scores yield a probability distribution over CNN class predic-
tions. We empirically note that, while the softmax probabilities
are not necessarily a formal probability measure, images that
are indeed truly a class (“true positives”) have a higher softmax
confidence element for that class of interest compared to “true
negatives”. For example, as shown in Fig. [ (right), images that
are indeed of Waymo cars (red) have a higher confidence score
for the Waymo class output compared to negatives (in blue),
showing that confidence scores above a separating threshold
are a useful signal to store a sample of interest.

Crucially, embeddings and softmax confidence scores are
readily produced simply by running a DNN forward-pass for
inference. Thus, when a robot’s perception model is already
being run for a high-level task, such as motion planning, the
sampler obtains the embeddings and confidence scores “for
free”. Then, these two metrics can be used in a lightweight,
data-driven filter to discern if a new image is likely a target
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Fig. 5: Role of Cloud Feedback: After a human annotates
more samples on each round i, the softmax confidence distri-
bution difference between target (red) and irrelevant (blue) im-
ages becomes sharper, which HARVESTNET uses to improve
sampling by adapting the confidence threshold conff, ...

of interest for caching. We further quantify in Sec. how
we can run HARVESTNET’s models on the Edge TPU [7].
Insight 3: Use prioritized human feedback in the cloud to
refine the target image filter.

The final insight behind HARVESTNET, shown in Fig. [3
is that the DNN softmax confidence distributions between
target images (red) and irrelevant images (blue) become more
differentiated as more human-annotated images are added to
the cloud dataset at every round ¢. Crucially, this allows
the cloud to better signal to the robot’s sampler how to
identify task-relevant target images from background noise,
thereby directly building on insight 2. A broader insight behind
HARVESTNET is that we can delegate compute-intensive tasks
of training to the cloud, but provide simple feedback to a robot
to improve its target image filter.

B. Practical application of the HARVESTNET insights

We now formalize how, together, insights 1-3 directly lead
to our novel HARVESTNET sampler, introduced in Algorithm
[1] Importantly, HARVESTNET is markedly distinct from to-
day’s active learning and data selection algorithms, due to its
use of a compute-efficient robot model and adaptive feedback
from cloud computing resources.

Application of Insight 1 (Fine-Tuning): Insight 1, which
governs how to fine-tune a DNN with minimal images (Fig. ]
left), is addressed by using pre-trained feature extraction layers
for initial robot model fyy. such as from publicly available
models, and only re-training final layers with transfer learning
for new target image classes. Further, we limit the sampled
cache size by Ncache-

Application of Insight 2 (Simple Target Image Filter):
Insight 2, which governs how to use DNN softmax confidences
or embedding distances to build a compute-efficient on-board
target image filter (Fig. [4 right), is now formalized in two
variants of sampling policies Teample (Eq. E[)

Variant 1. Embedding Distance Based Sampling: Two pic-
tures of the same person x'' and z% typically have a

lower embedding-distance p(z't,z'2) = |emb’t — emb’? ||§
than unrelated faces [23]. Using this insight, we compare the
embedding distance between a robot’s new sensory input x* to
each of the target images in TargetImageSet, and cache the
sample if the median distance is below an empirical threshold
Piiresn» indicating similarity to a face we want to learn.
Embedding distance threshold‘pihresh serves as the sampler
hyper-parameter 0%, 1., = {Pnresn ) in Eqn. 2} yielding:

t t ot i
" = Tsample(Z', Y 7TargetImageSet,6’;ampler)

=1 (MEDIAN {p(z’,2"™®"), Vz'*'® € TarglmSet} < pihresh) .

In this variant of the sampling policy, the cloud sends the
TargetImageSet of images and their embeddings to the robot
to compare with the embedding of a new image z*. In practice,
it is trivial to store a limited set of target images on-board, such
as 18 images which sufficed in our experiments.

Variant 2. Classification Confidence Based Sampling: In
cases where embedding distances are not optimized for
similarity between two input images, we can directly use
confidence scores conf! to determine if a new image is likely
to be a useful representative of the desired target. We rely on
the fact that initial robot DNN f3 . as well as successive
versions ffyy, are trained with a few examples of target
images and can predict their target class TargetClass in the
DNN model architecture. Then, given a new image xt, we
see if the confidence element for a target class, denoted by
conf[TargetClassSet], is above an empirically determined
threshold conff . (Fig. [3), which serves as the sampler
hyper-parameter 6. = {conf}; .} in Eqn. [2| Thus, the

R ’ sampler
sampling policy becomes:

¢ t ot i
a" = Tsample(z', y", TargetClassSet, Oiampler)

=1 (conft[TargetCIass] > conff;hresh> .

Unlike the embedding-distance variant of the sampling
policy, the softmax confidence version simply needs to know
the desired target classes TargetClassSet to harvest more
images of, which does not require storing any target images
TargetImageSet on-board. As measured in Sec. [V] it is
trivial to do a comparison of the output softmax confidences of
a DNN with a fixed threshold efficiently on embedded-devices.

Application of Insight 3 (Cloud Feedback): Our key
insight, depicted in Fig. [3] is to use the new cloud dataset
and improved model at the end of round i, D' and

g&lN to best adapt the sampler hyper-parameters Gi;ipler =
{confifl . pitl .} for the next round. This is achieved by

the AdaptThresh function:

0i+1

sampler

+ AdaptThresh(D' ™', fi5K). @)

In practice, AdaptThresh can be implemented using any
learning algorithm that creates a simple decision boundary
between task-relevant images’ scores or embeddings and those



of non-target images, such as logistic regression or a support
vector machine (SVM). In Sec. we show that cloud-
feedback on thresholds outperforms non-adaptive schemes.

C. The lightweight HARVESTNET sampling algorithm

Having explained insights 1-3, we can now present HAR-
VESTNET’s sampler in Algorithm [I] which serves as a prac-
tical heuristic solution to Problem [I] In each learning round
i, a robot has a fixed perception model f{\, and observes a
stream of sensory inputs {"*}7_ . Sampling policy Tsample
stores sampled images in cache Cache’, which is uploaded
to the cloud, annotated with ground-truth labels, appended to
cloud dataset D¢, and finally used to re-train perception model

S\#N This new model and an updated set of sampling param-
eters is then downloaded to the robot. Learning repeats for a
fixed set of rounds N,ounq, untili DNN validation accuracy
saturates. Key steps of Algorithm [1| are colored.

Algorithm 1: HARVESTNET Sensory Stream Sampler
Assemble Targets TargetClassSet, Cloud Dataset
DO
Pre-train Initial Robot Perception DNN fy on D°
Init. {conf? . p% .} < AdaptThresh(D?, fO\y)

for Learning Round i < 0 to N.ounq do
Cache’ < {0} // Init Empty Cache
fort < 0toT do
yt — [gt’ conft, embt] = f]gNN(xt)
al
Tsample (2!, y*, TargSet, {conf!, ,pi, 1)
Cache’. APPEND(z!) IFF o' =1
end
{({Lﬂ—’ yarou_ndTruth)} A ANNOTATE(CaChel)
DH_l % D' U {(xT7y(EroundTruth)}7 VaT €
Cache®
Difins Dyttt ¢ TRAINVALSPLIT(D'H)
FERN < Gretrain(finns Dihin)  // Re-train

i+1 i+1
{conficens péhresh_~_}1<_i+1
AdaptThresh(D"", fiyy)

end
Result: Final DNN fxoud Cloud Dataset DNround

D. Benchmark Sampling Algorithms

We compare HARVESTNET with the following benchmarks:
1. Random Sampling: This scheme randomly fills the limited
cache from T possible samples in round .

2. Non-adaptive cloud feedback: This scheme does not
adapt thresholds using Eq. [7] (yellow line in Alg. [T). Rather,
this scheme caches an image based on a probability that is
proportional to the softmax confidence. For example, an image
with a softmax confidence of 90% is added to the cache with
probability 0.90. Analogously, an image with the 10% quantile
of embedding distances is cached with probability 0.90, since
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Fig. 6: FaceNet Results: We achieve steady accuracy gains
with minimal face examples, even matching the oracle perfor-
mance for Face B, shown by the curve overlap.

lower embedding distances are preferred. Since this scheme
does not calibrate itself using a threshold, it often misses true
positives which have low confidence scores at early rounds
(Fig. [} left). We also experimented with an “arg-max” policy
which stores an image if the confidence element for the target-
class was most probable, but this performed poorly since the
cutoff was too strict to store any task-relevant images.

3. HARVESTNET-PriorityQueue: This scheme caches an im-
age into a priority queue ranked by either softmax confidence
scores or embedding distances. The first items that are dropped
when the priority queue is full are the target image with lowest
softmax confidence or highest embedding distance.

4. Oracle Sampling: This is an un-realizable upper bound
since it perfectly identifies images of the desired target at the
robot. Since it is analytically hard to compute the best set
of limited images of size N¢ache to best improve the model,
we instead approximate the upper bound by averaging several
samples of Ngache true target images, chosen without any
error. Importantly, the oracle takes the place of an “all-cloud”
approach, since uploading all the data to the cloud is infeasible
for network-limited robots like subterranean rovers.

V. HARVESTNET’S EXPERIMENTAL PERFORMANCE

We now show HARVESTNET’s ability to (1) achieve high
model accuracy for a minimal number of sampled images
(Figs. [6l [7), and (2) produce compute-efficient vision models.
Every benchmark that we evaluate has a fixed cache limit of
Ncache and thus obeys the constraints of Problem 1. Further,
our results metric of high model accuracy is equivalent to
minimizing model loss, which is the objective of Problem 1.

A. Performance on Diverse Video Streams

FaceNet: Our key result for the FaceNet scenario shows
the final DNN classification accuracy on all fest images (y-
axis) as more learning rounds ¢ progress (x-axis). As shown in
Fig. E] (left) our sampler of HARVESTNET, in orange, achieves
upto 1.68x the final accuracy of benchmarks and no lower
than 92% the accuracy of an upper-bound oracle solution in
green. Fig. [] also shows HARVESTNET can flexibly adapt to
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Fig. 8: Prototype: (Left) The lightweight sampler runs on an
embedded CPU, such as on the Raspberry Pi, which uses an
Edge TPU USB to accelerate DNN inference. Model Per-
formance: (Right) HARVESTNET re-trained object-detectors
flexibly run on the Edge TPU or cloud GPUs.

different target faces of interest, since it shows steady model
improvements for two randomly selected targets, referred to
as Face A and B in the plots. Importantly, the robot is only
provided TargetSet = 18 initial examples of the face of
interest and only caches a minimal set of images N¢ache = 10
per learning round ¢, much less than the thousands of frames
it observes per video. We used the widely-adopted OpenFace
nnd.small2.vl DNN for face embeddings [11], which
were passed to an SVM for face-classification.
Generalization to Dynamic Road Scenes: We now stress
test HARVESTNET’s ability to identify challenging road scenes
of self-driving cars and construction sites. Both domains show-
case HARVESTNET’s flexibility in using softmax confidence
scores to decide if an image is likely a task-relevant training
example to cache, unlike embedding distances in the FaceNet
scenario. In each round i, we fine-tuned the Inception V3
DNN [26] in PyTorch on an Nvidia Tesla K80 cloud GPU
for 20 epochs, which led to stable convergence, using hyper-
parameters outlined in our technical report.
Fig. [7] shows the steady increase of final test set accuracy
of various samplers (y-axis) for learning rounds ¢ in both

the construction and self-driving car domains. For Waymo,
HARVESTNET, in orange, achieves upto 1.11x the final ac-
curacy of benchmarks and 93.5% the accuracy of an upper-
bound oracle solution in green. The most challenging test of
HARVESTNET comes from classifying whether a road scene
has a construction site, since these rapidly changed daily. Still,
HARVESTNET outperforms non-adaptive sampling by over
1.38x times and is within 87% of the oracle solution.

Comparison with Priority Queue Version: HARVEST-
NET, which uses adaptive thresholds, convincingly outper-
forms benchmarks of non-adaptive and random sampling. It
also outperforms a variant of HARVESTNET that uses the exact
same algorithm, but rather caches images in a Priority Queue,
dubbed HNetPriorityQueue, albeit by a lower margin such
as in the Waymo domain. The priority queue version does
worse when the proportion of target images per day is highly
non-uniform, especially on days where there are no targets,
leading it to cache irrelevant images below the empirical
threshold. Depending on how uniform the distribution of
sensory inputs are per day, a designer might consider using
the HNetPriorityQueue variant, which is also extremely
compute-efficient and simple.

Benefits of re-training with field data: To appreciate the
accuracy gains of HARVESTNET, we consider the final model
accuracy if we trained a CNN solely on high-quality public
images of Waymo cars and construction sites and tested on our
realistic road dataset. We could only find less than 200 Google
Images for each scenario, which yielded an extremely poor
accuracy of only 41.6 % for Waymo and 0 % for construction.
Indeed, public images were often zoomed in, clear pictures
from marketing images, and were not representative of real
road scenes with partially occluded targets. Thus, our steady
accuracy gains are substantial, especially with minimally-
sampled images. Unlike the rapid saturation of FaceNet and
Waymo accuracy, the construction example kept improving
with time, serving as key benefit of continual learning.

Systems Bottleneck Savings: The principal benefits of
intelligent sampling derive from limiting the number of images
cached in each learning round (e.g Ncache = 60). Thus,
by re-training on between only 18-34% of possible images,
we decrease storage, annotation cost and time, and cloud-
computing time by 65.7-81.3%, since costs scaled linearly with
the number of sampled images in our setup. These estimates
will vary considerably based on systems infrastructure.

B. Prototype on Edge Tensor Processing Unit (TPU)

Finally, we show that training examples collected by HAR-
VESTNET can also be used for re-training object detection
CNNs, shown in Fig. 2] that scalably run on compute-
limited robots. Accordingly, we ran HARVESTNET’s DNNs
on Google’s Edge TPU development board [7], where the
TPU is a dedicated circuit for fast, low-power TensorFlow
[10] model inference. The relatively new Edge TPU board
supports, at best, a quantized MobileNet 2 (MN2) DNN and
features a complementary ARM Cortex embedded CPU, which
runs DNNs without the aid of an Al accelerator.



Fig. [§ (right) shows that HARVESTNET can flexibly re-
train mobile-optimized models, such as MobileNet 2, or more
accurate, but slower “cloud-grade” models such as Faster R-
CNN (contrasted in Fig. . Thus, one can trade-off speed,
size, and accuracy, quantified by the standard COCO mAP
metric [[6], for a wide variety of robot compute resources.

For example, one can scalably run real-time vision algo-
rithms on the TPU, which readily provides embeddings and
class confidences, and pass them to HARVESTNET’s sampler
running on an embedded CPU with minimal overhead. This
configuration is shown on the robot we used in Fig. [§] where
the Raspberry Pi’s CPU can decide whether to cache a new
image with a mean speed of just ~ .31ms, which is an order
of magnitude faster than DNN inference on the Edge TPU!

Limitations of our sampler: HARVESTNET might fail
in scenarios with extremely rare visual data, such as cases
where we cannot obtain enough samples to seed the initial
cloud dataset and train the initial robot model on round 0. In
future work, we can consider whether unknown weakpoints
of a model can be cached by storing examples with high
confidence score entropy.

VI. DISCUSSION AND CONCLUSIONS

The key contribution of this paper is to introduce a new,
widely-applicable sensory sampling problem to the robotics
community and experimentally show the gains of our compute-
efficient sampler. Since we anticipate the volume of rich
robotic sensory data to grow, thereby making systems bot-
tlenecks more acute, we encourage the robotics community to
significantly build upon our work. As such, we have open-
sourced our dataset, Edge TPU vision DNNs, and sampling
algorithm code at https://sites.google.com/view/harvestnet.

In the future, we hope to enhance HARVESTNET by fusing
data from several cameras and LIDAR sensors on-board a
robot. Further, the sampling algorithm can be modified to
select adversarial training examples for vision DNNs. Lastly,
HARVESTNET’s sampler can be enhanced to explicitly not
store “private” training data by rejecting such samples. We
believe HARVESTNET is a vital first step in keeping pace with
surging sensory data in robotics by insightfully filtering video
streams for actionable training examples, using insights from
embedded Al, networking, and cloud robotics.
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Bottleneck Multi-Sensor Dashcam-ours

B. Box Mask B. Box Mask
Storage $31,200 $31,200 $172.50 $172.50
Transfer Time (hr) 8.88 8.88 0.05 0.05
Annotation Cost $95,256 $1,652,400 $15,876 $275,400
Annot. Time (days) | 22 NA 18 NA

TABLE II: Systems Costs: Monthly storage/annotation cost
and daily network upload time are significant for self-driving
car data even if we annotate /% of video frames.

APPENDIX

We now quantify system costs for cloud model re-training
for a small fleet of 10 robots in Table each of which is
assumed to capture 4 hours of driving data per day. In the
first scenario, called “Dashcam-ours”, we assume a single car
has only one dashcam capturing H.264 compressed video, as
in our collected dataset. In the second scenario, called “Multi-
Sensor”, we base our calculations off an Intel report [1] that
estimates each self-driving car will generate 4 TB of video and
LIDAR data per day (1.5 hours of driving), of which video
data alone is about 432 GB.

To calculate monthly storage cost, we use the Google Cloud

Storage rate of $0.026 per GB of monthly data [3]. For
network transfer time, we assume cars upload data over state-
of-the-art, extremely fast 10Gb/s ethernet, when being serviced
nightly at a garage. To be conservative, we assume only 1%
of image data is interesting and needs to be annotated, specifi-
cally by the state-of-the-art Google Data Labeling service [4].
We consider two cases that are: (1) these 1% of video frames
need to be annotated with bounding boxes at a standard rate
of $49 per 1000 boxes [3]], or (2) these 1% of frames need to
be labeled with segmentation masks for $850 per 1000 masks
[5]. On average, we assume each image has about 5 boxes or
masks to be labeled. To roughly estimate annotation time, we
hand-labeled 1000 bounding boxes in 1.4 hours. Using this
rate, we estimate the number of days per month a team of 5
labellers will take in Table [[Il Since we did not train models
for segmentation, relevant estimates are marked as “NA”.

Overall, our estimates are conservative, since we assume a
small fleet of 10 cars, extremely fast network transfer speeds,
and pay for annotation of only 1% of video data because
LIDAR annotation does not have easily quantifiable costs from
current data labelers. Nevertheless, Table [II| shows significant
costs, especially for dataset annotation.
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