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ABSTRACT
Location services, fundamentally, rely on two components: a map-
ping system and a positioning system. The mapping system pro-
vides the physical map of the space, and the positioning system iden-
tifies the position within the map. Outdoor location services have
thrived over the last couple of decades because of well-established
platforms for both these components (e.g. Google Maps for map-
ping, and GPS for positioning). In contrast, indoor location services
haven’t caught up because of the lack of reliable mapping and posi-
tioning frameworks. Wi-Fi positioning lacks maps and is also prone
to environmental errors. In this paper, we present DLoc, a Deep
Learning based wireless localization algorithm that can overcome
traditional limitations of RF-based localization approaches (like
multipath, occlusions, etc.). We augment DLoc with an automated
mapping platform, MapFind. MapFind constructs location-tagged
maps of the environment and generates training data for DLoc. To-
gether, they allow off-the-shelf Wi-Fi devices like smartphones to
access a map of the environment and to estimate their position with
respect to that map. During our evaluation, MapFind has collected
location estimates of over 105 thousand points under 8 different sce-
narios with varying furniture positions and people motion across
two different spaces covering 2000 sq. Ft. DLoc outperforms state-
of-the-art methods in Wi-Fi-based localization by 80% (median &
90th percentile) across the two different spaces.
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•Networks→ Location based services; •Computingmethod-
ologies → Robotic planning; Supervised learning; • Informa-
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Figure 1: Overview: MapFind (left) is an autonomous platform
that maps an indoor environment while collecting wireless channel
data. The platform generates a detailed map of the environment
and collects training data for DLoc. DLoc uses the training data to
learn a model to accurately localize users in the generated map.

1 INTRODUCTION
The introduction of GPS and GPS-referenced public maps (like
Google Maps, Open Street Maps, etc. [4, 14, 19, 42]) has completely
transformed the outdoor navigation experience. In spite of signifi-
cant interest from industry and academia, indoor navigation lacks
further behind [25, 41]. We cannot use our smartphones to navigate
to a conference room in a new building or to find a product of inter-
est in a shopping mall. This is primarily because, unlike GPS, indoor
navigation 1 lacks both reliable positioning and accurate indoor
maps. First, while recent work [34, 35, 53, 57, 59, 67] has successfully
built methods to locate smartphones indoors using WiFi signals to
median accuracies of tens of centimeters, the errors are much larger
(3-5 m) in multipath challenged environments that have multiple re-
flectors. These errors are reflected in the high 90 and 99-percentiles
errors reported by the current systems. These high errors mean
that people can be located in entirely different rooms or different
hallways when walking indoors. Second, location-referenced in-
door maps are scarcely available. In few cases, like airports and
shopping malls, Google and a few other providers [18] create floor
plans, but these floor plans are manually created and often need
to be updated as floor plans change and they lack details such as
cubicles, furniture, etc.

In this paper, we aim to solve both challenges. We propose a data-
driven approach for indoor positioning that can implicitly model
environmental effects caused by reflectors and obstacles, and hence
significantly improve indoor positioning performance. In doing so,
we build on recent trends in deep learning research that combines
domain knowledge and neural networks to solve domain-specific
problems. Specifically, we build a system, DLoc, that leverages
existing research in indoor positioning in combination with neural
networks to deliver state-of-the-art indoor positioning performance.
We further developed an automated mapping platform, MapFind.

0Work done while at MIT.
1GPS alone does not work in indoor scenarios [40, 49]
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MapFind is equippedwith a LIDAR, and odometer to leverage SLAM
(simultaneous localization and mapping) for creating indoor maps
with minimal human effort. In addition, we deploy a WiFi device on
MapFind to automatically generate labeled data for training DLoc.
An overview of our system design is shown in Fig. 1.

Before we delve deeper into our design, let us briefly summa-
rize how WiFi-based indoor positioning works today. WiFi access
points measure WiFi signals emitted by a smartphone (see Fig. 2)
and convert these signal measurements to location estimates in
a two-step process. First, we convert wireless signals received at
multiple antennas on an access point to a physical parameter, like
the angle of arrival of the signal. This transform is independent
of any environmental variables, and is (in most cases) a change of
signal representation performed using some variant of the Fourier
transform. Second, this physical information is converted into a
location estimate using geometric constraints of the environment
like the location of access points. In the absence of reflectors and
obstacles (i.e. free space), this step can easily be performed using
triangulation of line-of-sight paths. However, when the direct path
between the client and the access point is blocked, this step leads
to large errors in location estimates.

Intuitively, in the above example, we can identify the accurate
location of the smartphone if we knew the exact size, shape, and
location of the reflector. More generally, having an accurate model
of the environment allows us to enable accurate positioning even
when the line-of-sight path is blocked or when there are many
reflectors present. However, obtaining this information about the
environment from WiFi signal measurements is very challenging.
This is primarily because radio signals undergo a complex combi-
nation of diffraction, reflection, and refraction when they interact
with objects in the environment. Modelling these competing effects
on wireless signal measurements and then using the measurements
to build an explicit model of the environment is an unsolved (and
extremely challenging) problem.

Instead, we use a neural network to build an implicit model of
the environment by observing labelled examples. By observing
how the environment impacts the relationship between wireless
signals and ground truth locations, a neural network can learn an
implicit representation of the relationship. Then, it can use this
representation to identify locations of unlabelled points. Based
on this intuition, we build DLoc. In doing so, we solve three key
challenges:
(i) Incorporating Domain Knowledge into the Neural Net-
work Design: In designing DLoc, we accomplish two objectives.
First, we want the neural network to build on the decades of ground
breaking WiFi positioning research [7, 11, 34, 53, 57, 64, 65, 67]. Sec-
ond, we wish to leverage the recent advances in deep learning
research, especially with respect to the usage of convolutional neu-
ral networks (CNNs) and 2D image based techniques in computer
vision[28, 38, 52, 72, 76]. To meet these objectives, we represent
the input to the neural network as a two-dimensional likelihood
heatmap that represents the angle-of-arrival and time-of-flight (or
distance) information (as shown in Fig. 3). The output of the net-
work is represented as a two-dimensional Gaussian centered on the
target location. This representation allows us to plug in state-of-the-
art WiFi positioning algorithms to generate the input heatmaps. It
also lets us frame the localization problem as an image translation
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Figure 2: Traditional Localization Approach: WiFi signals
transmitted by a smartphone are measured at multi-antenna access
points. The access points infer angle of arrival information. How-
ever, in the absence of a direct path, this information is erroneous
and can lead to large errors (3 to 5m).

problem, enabling us to access the vast array of image translation
tools developed in deep learning research.
(ii) Consistency across Access points: The standard approach to
image translation problems is to use an encoder-decoder network.
However, this approach won’t directly apply to our scenario. Recall,
our objective is to model the impact of objects in the environment
on wireless signals. To do so, the network must see these objects
appear at the same location consistently across multiple access
points. However, this consistency requirement is violated because
commercial WiFi devices have random time-of-flight offsets (due
to lack of time synchronization between clients and access points).
These offsets at a single access point could shift objects by distances
as large as 10 to 15 meters for that access point. Thus an object that
appears to be at the center for one access point will appear to be at
the edge for another access point. This representation will change
across different training samples because these time-offsets vary
per packet. So, we need to teach our network about these offsets and
enforce consistency across the access-points. To do so, we model
our network as a single encoder, two decoder architecture. The
first decoder is responsible for enforcing consistency across access
points. The second decoder can then identify the correct location
by leveraging the consistent model of the environment.
(iii) Automated Training Data Collection andMapping: As is
well-documented, deep learning approaches require a large amount
of training data to work. To automate the process of data collection,
we build a platform, MapFind, that uses a robot equipped with
LIDAR, camera, and odometry to collect ground truth location esti-
mates for corresponding wireless channels. To further optimize the
data collection process, we build a new path planning algorithm
that can minimize the time required to collect the optimal train-
ing data for DLoc. Our path planning algorithm ensures that we
can map an environment and collect training data samples within
20mins for a 1500 sq. ft. space, while manual data collection for the
same would take at least 17hrs. This enables us to generate large
scale location-referenced CSI data and efficiently deploy DLoc in
new environments.

We built DLoc and deployed it in two different indoor environ-
ments spanning 2000 sq. ft. area under 8 different scenarios. We
summarize our results below:
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Figure 3: Input Representation:We use 2D heatmaps (center) to
encode time-of-flight and angle-of-arrival information computed
using state-of-art algorithms. These heatmaps are translated to the
global Cartesian space (right) via polar to Cartesian conversion to
encode the access point location.

• DLoc achieves a median accuracy of 65 cm (90-th percentile 160
cm) as opposed to 110 cm median accuracy (90-th percentile 320
cm) achieved by the state-of-the-art[34].
• When tested on an unknown environment, DLoc’s performance
continues to stay above the state-of-the-art (91 cm median error
as compared to 173 cm).
• MapFind maps 2000 sq. ft. area and collects a total of 105,000 data
points across 8 different scenarios that take 20 mins per scenario
.
• MapFind’s data selection algorithm on an average reduces the
required path to be travelled by 2.6 × compared to naive random
walk.
Our contributions are summarized below:

• DLoc is a novel deep learning framework for WiFi localization
that frames localization as an image translation problem. Our neu-
ral network formulation incorporates domain knowledge in WiFi
localization to deliver state-of-the-art localization performance.
• DLoc is the first algorithm that can correct for time-of-flight
offsets without requiring additional instrumentation on client
devices.
• MapFind is the first autonomous robot, which provides wireless
channel state information with the map of the physical space
using SLAM techniques. The mapping not only provides ground
truth label for wireless channel state information but also gener-
ates a detailed map for map-based navigation.
• We collect a large dataset consisting of 105k points. We believe
this dataset can spur innovation in deep-learning-based indoor
positioning research, similar to what ImageNet[50] did for com-
puter vision research. 2

2 DEEP LEARNING BASED LOCALIZATION
As shown in Fig. 1, the system operates in two stages: mapping and
localization. During the mapping phase, the MapFind bot, equipped
with aWiFi device to collect wireless channel information, performs
an autonomous walk through the space to map the environment.
Simultaneously, the WiFi device on MapFind collects the CSI for
WiFi packets heard from all the access points in the environment. At
the end of its walk, the platform generates amap of the environment,
and a log of the CSI-data collected at different locations. The CSI-
data is labeled with the ground truth locations reported by the
platform.

2Our dataset is publicly available at https://wcsng.github.io/wcsng/dloc

DLoc uses these CSI-log generated by MapFind to train a deep
learning model. This model, once trained, can be used by users
to locate themselves using their WiFi enabled devices (like smart-
phones). The users can also access the maps of the building by
making calls to a centralized server. In this section, we describe
the details of DLoc’s algorithm. MapFind’s design is described in
Section 3. The implementation details and detailed evaluation of
MapFind and DLoc are presented in Section 4 and Section 7 re-
spectively. The dataset is described in 5. Few micro-benchmarks
for DLoc are discussed in Section 6. Finally, we conclude with a
discussion of related work in Section 8.

2.1 Motivation
In free space devoid of reflectors and blockages, wireless channels
measured at an access point on a given frequency depend solely on
the location of the client device. Let us say that the client is located
at locationX , then the signal, s , measured at the access point can be
written as s = α (X ) where α is a function In this case, the objective
of any localization system is to simply model a signal-mapping
function that maps signal measurements back to user location.

However, this problem is much more complex when there are
multiple reflectors and obstacles in place. Let’s say we denote
the shape, size, and location of objects in our environment as a
set of hyperparameters, Θ. Then, the signal s ′ can be written as
s ′ = α ′(X ;Θ). This mapping from reflectors in the environment to
signal measurements is computationally very complex as it requires
accounting for effects like reflection, refraction, diffraction, etc. In
fact, commercial software for modeling such interactions by simula-
tion take several hours to simulate small, simple environments [48].

For localization, we don’t even have access to Θ, thus identifying
the signal-mapping function corresponding to α ′ is more chal-
lenging than the forward problem of modeling α ′. Our insight is
that we can leverage neural networks to model the signal-mapping
function as a black box. We are motivated by recent advances in
deep learning that opt for black-box neural network representa-
tions over hand-crafted models and obtain superior performance.
This approach allows us to create an implicit representation of the
environment, and distills the impact of the environment on the
location into the network parameters by observing ground truth
data.

2.2 Incorporating Wireless Localization
Knowledge for Input Representation

Recall, WiFi uses Orthogonal Frequency Division Multiplexing
(OFDM) to divide its bandwidth (e.g., 20/40/80 MHz) into multiple
sub-frequencies (e.g., 64 sub-frequencies for 20 MHz). So, the chan-
nel state information (CSI) obtained from each access point is a
complex-valued matrix, H , of size Nant × Nsub . Here, Nant is the
number of antennas on the access point and Nsub is the number of
sub-frequencies. How do we represent this matrix as an input to a
neural network?

A naive representation would feed this complex-valued matrix
to a neural network as two matrices: one matrix comprising the
real values of H and another matrix comprising the imaginary
values of H . However, this representation has three drawbacks.
First, this representation doesn’t leverage all the past work that
has been done in WiFi localization, thereby making the task of

https://wcsng.github.io/wcsng/dloc
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Figure 4: Challenges: DLoc needs to counter three error-inducing effects. First, random time-of-flight (ToF) offsets shift the ideal image (a)
along the ToF axis (shown in (b)). The presence of reflectors add spurious peaks, as shown in (c). Finally, in (d), the absence of direct path
makes the user device appear at a wrong location, in both angle and distance axes. (’x’ denotes the actual location.)

localization unnecessarily complex for the neural network. Second,
this representation is not compatible withmost state-of-the-art deep
learning algorithms that have been designed for images, speech, and
text that do not use complex valued inputs. Finally, it does not embed
the location of the access points, information that is necessary for
localization.

As discussed before, in DLoc, we use an image-based input rep-
resentation. We use a two-step approach to transform CSI data into
images. Since recent deep learning literature focuses mainly on
images [17, 26, 56, 63], this allows us to utilize existing techniques
with localization-specific variations. In the first step, we convert the
CSI-matrix,H , to a 2D heatmap,HAoA−ToF , where AoA is the angle
of arrival and ToF is the time-of-flight. The heatmap represents the
likelihood of device location at a given angle and at a given distance.
Conversion of CSI-matrix, H , to the 2D heatmap, HAoA−ToF , can
be achieved using two different methods that have been discussed
in past work [6, 34]. We use the 2D-FFT transform employed in [6]
(example heatmap in Fig. 3).

While the HAoA−ToF is an interpretable image, it does not yet
encode the location of the access points. To encode the location of
the access points in these images, we perform a coordinate trans-
form on these images. We convert these images to a global 2-D
Cartesian plane. This transform converts HAoA−ToF to HXY , a ma-
trix that represents the location probability spread out over the
X-Y plane. To perform this transform, we define an XY coordi-
nate system where the APs location is (xap ,yap ) and the AoA-ToF
heatmap is HAoA−ToF . Given this information, we can estimate the
XY heatmap, HXY by a Polar to Cartesian transformation. Repre-
senting the data as HXY gives us the ability to combine data from
all the access points in the environment.

2.3 Deep Neural Network Design
At this point, one might wonder if we can just sum the images
obtained for the different access points, and pick the maximum
probability point as the target location. Unfortunately, it is not
so simple as several challenges prevent this approach from be-
ing functional. First, the access point and client device are not
time-synchronized with each other. As a result, the time-of-flight
information has an unpredictable unknown offset making the peak
move away/towards the AP as depicted in Fig. 4(b). Furthermore,
this offset is different for the different access points. Therefore, the
images corresponding to each access point have an arbitrary radial
shift. Second, if obstacles block the direct path from the client to
the access point, then there would be no signal visible at the target
location as depicted in Fig. 4(d). In fact, the existing localization

algorithms [34, 53, 57, 67, 68] fail at taking care of such non-line-
of-sight (NLOS) cases, where there is no direct path and thus fail
at estimating the accurate location of the client. Finally, WiFi typ-
ically has a bandwidth of 20 or 40 MHz, which corresponds to a
distance resolution of 15 m and 7.5 m respectively. This means that
for a 40MHz bandwidth signal if the direct path from the client
to the access point is not separated from the reflections in the en-
vironment by at least 7.5 m, these paths cannot be separated as
depicted in Fig. 4(c). Therefore, picking the correct location is not
as straightforward as just picking the maximum intensity point in
the summed heatmaps.

The input representation ensures that all of the above challenges
can be framed as image translation challenges. As discussed before,
our goal is to use deep learning based image translation and adapt
it to solve the challenges for indoor positioning. We want to design
the neural network such that it can create a consistent implicit
representation of the environment, and then use this representation
to output the correct location of the client.

Target Representation: The target of the network is also an im-
age of the same dimensions as the input images. Since our network
is an image translation network, it allows it to generalize to en-
vironments of arbitrary size. We do not need a separate network
for every environmental space. Within the target image, instead
of just marking the correct location as one and the rest zeros, we
choose a target image with the correct location of the user marked
as a Gaussian peak. This Gaussian peak representation is beneficial
because it prevents gradient under-flows which are caused by the
former approach. We denote this target image as a matrix, Tlocation.

Architecture: These choices of input and output representations
help us to generalize DLoc’s implementation to any state-of-the-art
image translation networks. We model our network as an encoder-
decoder architecture, with two parallel decoders feeding off the
encoder. The architecture is shown in Fig. 5. The two decoders
focus on two objectives simultaneously: localization and space-
time consistency. The encoder, E : H → Ĥ , takes in the input
heatmaps,H , corresponding to all the APs in the environment and
generates a concise representation, Ĥ that feeds into the location
decoder and consistency decoder. H is a set of NAP heatmaps,
HXY ,i , one for ith access point (i = 1, 2, ·,NAP ). The consistency
decoder, Dconsistency : Ĥ → Yconsistency ensures that the network
sees a consistent view of the environment across different training
samples as well as across different access points. WhereYconsistency
are output heatmaps, Y iconsistency corresponding to all the APs (say
NAP ). It does so by correcting for radial shifts caused because
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Figure 5: DLoc’s architecture: DLoc takes the NAP images obtained from the NAP APs as inputs and generates an output image pre-
dicting the location with a Gaussian peak. For each Conv2d and ConvTranspose2d, the four values shown are [<kernel-height>,<kernel-
width>,<stride>,<padding>]. The red dashed line shows the Loss back-propagation through the network.

of lack of time synchronization between access points and client
devices. The location decoder, Dlocation : Ĥ → Ylocation takes
in the encoder representation, Ĥ and outputs an estimate for the
location, Ylocation.

Our architecture(see Fig.5) is inspired by the Resnet generator
implementation of [28], tweaked to fit our requirements. We add
an initial layer of Conv2d with a 7 × 7 kernel followed by Tanh
instead of the usual ReLU non-linearity to mimic a log-scale com-
bining across the images over the depth of the network. Further,
the Consistency Decoder network has 6 Resnet blocks while the
Location Decoder has only 3 Resnet blocks as the insight behind
offset compensation through consistency is harder to grasp than
optimal combining across multiple APs to identify the correct peak.
Further implementation details are discussed in Section 4.

Enforcing Consistency by Removing ToF offsets: As we dis-
cussed earlier, the target output of the location decoder are images
that highlight the correct location using a Gaussian representation.
A natural question at this point would be, how can we train the
consistency network so that it can teach the common encoder to
learn to correct for time-of-flight (ToF) offsets that are completely
random? Recall, ToF offsets cause random radial shifts in the input
heatmaps causing the same objects to appear at different locations
in different training samples, as well as different access points. If we
do not correct for these random radial shifts, the network will be
unable to learn anything about the environment, thereby severely
limiting its capability.

Therefore, the objective of the consistency decoder is to take
in images from multiple access points that have these completely
random ToF offsets and output images without offsets. To resolve
this, we exploit the information that is common across all the access
points. Our insight is that while the radial shifts are completely
random at each access point, the underlying environment is the
same, i.e. when corrected, the images will have a common peak
at the correct user location. To achieve this consistency across
multiple access points, it needs training data that has no-offset
images as targets. We generate these no-offset target images using
a heuristic described below.

We have access to images with offsets and the corresponding
ground truth locations for the training data. We need to use this
information to generate images without offsets. First, we use the
image with offsets to identify the direct path. The direct path needs
to have the same angle as the correct ground truth location but
can have a different ToF (as shown in Fig. 4(a)). Within paths along
the same angle, we pick the smallest ToF path as the direct path3.
Let us say that the direct path has ToF τ ′. Further, we calculate the
distance between the ground truth location and the access point
and divide it by the speed of light to get the expected ToF, say τ̂ .
Then, the offset can be written as τ ′ − τ̂ . We shift every point on
the image radially (i.e. to reduce/or increase its distance from the
origin) by this offset to correct for the offsets and create an offset
compensated image. We denote this offset compensated image as a
matrix, Tconsistency.

We can, then, use the offset compensated images as targets to
train the Consistency decoder. Note that, we have access to the
offset compensated images only during training time. We cannot
use the heuristic above to create such images if we do not know
the true ground truth location (like during real-time operation).
Finally, note that the consistency decoder has access to all NAP
access points at the same time. It would be impossible to correct
for time-of-flight offsets if it had access to just one access point
because the offsets for each access point are random. The network
can use all NAP access points to check that it applied the correct
offsets by looking for consistency across the NAP different APs.
Loss Functions: For both the location and consistency decoders,
our inputs and targets are images. Hence, we employ L2 compara-
tive loss for both decoders. Since the Location Network’s output is
very sparse by definition, we employ L1 regularization on its out-
put image to enforce sparsity. The loss of the consistency decoder,
Lconsistency, is defined as:

Lconsistency =
1

NAP

NAP∑
i=1
| |Dconsistency

(
E (H )

)
−Tconsistency | |

2
i (1)

3 If there is no path along the correct AoA (we know the correct AoA from the
MapFind’s location reports), we assume that the direct path is blocked and hence, do
no operation and use the images as is.
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where | | · | |2 is L2 loss, NAP is the number of access points in the
environment and Tconsistency is the offset compensated image. Re-
call, H = [HXY ,1,HXY ,2, ·,HXY ,N−AP ] denotes the input to the
network and Dconsistency (E (H )) is just the output of the consis-
tency decoder once it has been applied to the encoded version of
H . Similarly, we define the loss of the localization decoder as:

Llocation = | |Dlocation
(
E (H )

)
−Tlocation | |

2

+λ × L1
[
Dlocation

(
E (H )

)] (2)

where Tlocation are the target outputs (Gaussian-representation of
ground truth locations). Finally, the overall loss function is a sum
of both Llocation and Lconsistency described above.
Training Phase: During the training phase, we utilize labeled
CSI data and the ToF offset compensated images to train DLoc
end-to-end, where the losses flow and update the network weights
as shown by the red dotted line in Fig. 5. With the loss functions
defined as above, the network learns to remove the ToF offsets
utilizing the Consistency decoder. Since the offset loss and location
loss add up to update the Common Encoder, the location decoder
gets access to the information regarding ToF offset compensation
thus enabling it to learn and predict accurate user locations.
Test Phase: Once the model is trained, we do not need the consis-
tency decoder anymore and only the rest of the network is stored
and would continuously run on a central server to which the APs
report their CSI estimates from the client associated to them. Then
this server upon request can communicate to the client, its location.
The server can also send the map generated by MapFind corre-
sponding to the APs location.
Discussion: We highlight a few interesting observations:
• WiFi operates on different bandwidths (20 MHz, 40 MHz, 80
MHz), and hence the input heatmaps can have a different resolu-
tion corresponding to the bandwidth. To train our model for all
possible bandwidths, we collect training data on the highest avail-
able bandwidth (80 MHz in our case). For a subset of this data,
we drop down the bandwidth to 20 MHz or 40 MHz chunks at the
input of the network, but we stick to the high bandwidth (high
resolution) images for the output of the Consistency decoder.
This helps the Consistency decoder to not just learn about ToF
offsets, but also learn some form of super-resolution to increase
resolution.
• Our image translation approach allows the input and output im-
ages to be of any size without impacting the resolution. It allows
the network to easily update to different environments that may
have different size, shapes, and access point deployments.

3 MAPFIND: AUTONOMOUS MAPPING &
DATA COLLECTION PLATFORM

Localization of a device is one part of the indoor navigation chal-
lenge. The other part is getting access to indoor maps. Descriptive
indoormaps, rich in feature information and landmarks, are scarcely
available. Furthermore, manually generating these maps becomes
increasingly expensive in frequently re-configured environments
like grocery stores, shopping malls, etc. Additionally, when de-
signing neural networks, a key challenge is the cost of collecting
data. Naturally, if we were to manually move around with a phone

in our hand to thousands of locations and measure the ground
truth locations, it would take us weeks to generate enough data to
train a model for DLoc. We solve both these problems by designing
MapFind, a mapping and automated data collection platform. In
building MapFind, we strive to meet the following goals:
• Autonomy: It should be an autonomous platform for collecting
location-associated wireless channel data (CSI data). The data-
association between CSI and the map will allow DLoc to provide
map-referenced locations.
• Accuracy: The collected CSI should be reliable and labeled with
accurate location of the WiFi device.
• Efficiency: It should collect a diverse set of data points for DLoc
in short time (within an hour or two).
• Ease of Replication: It should be simple to use and open-source,
allowing it to be an ubiquitous platform for testing future WiFi
localization algorithms.

3.1 System Design
MapFind builds on extensive research in the SLAM (Simultane-
ous Localization And Mapping) community that uses autonomous
robots equipped with LIDARs, RGBD cameras, gyroscopes and
odometers to navigate an environment. We use the publicly avail-
able RTAB-Map SLAM framework[36, 37] and Cartographer[21]
to create an accurate 2D occupancy grid map as shown in Fig 6(a).
Furthermore, given a descriptive map of the environment, these
frameworks also provide the locations of the bot.

To achieve autonomous navigation,MapFindworks in two stages.
Firstly with the user’s aid, it navigates the environment as shown
in Fig 6 (c). In this stage, SLAM works by capturing data from
these sensors and combining this data into an accurate map of the
environment. Next, during the autonomous data collection phase,
MapFind uses this map to match features it has previously seen
before to accurately localize itself in real time.

In addition to obtaining location information from these SLAM
frameworks, we equip the robot with a WiFi device to collect CSI
and tag each CSI measurement with the location measurement. We
manually align the local coordinate systems of the access points
deployed in the environment with MapFind’s global coordinates.
Further, to synchronize the timestamps across the bot and the access
points, we collect one instance of data for each of these access points
at the start of the data collection. This ‘sync-packet’ provides the
start time across all the access points and our bot. This consistent
time stamp allows us to associate each CSI measurement with a
location provided by MapFind. Thus, MapFind provides the map of
the space it explored and the location-referenced CSI data of the
environment.

3.2 Path Planning Algorithm
Recall, we plan to use MapFind to collect training data for DLoc. We
need this data to be random and diverse to train a robust model. In
addition, we need to cover the space in a short amount of time, i.e.
we need tomaximize diversity in our training datawhileminimizing
the time to traverse the space. To achieve this objective, we design
a path planning algorithm.

First, we observe that the channel state information exhibits
spatial locality in its behavior. Therefore, for every location where
the robot collects data, we define a circle with radius RCSI where
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Figure 6: MapFind Design: (a) MapFind uses an autonomous robot to travel around and creates an indoor map. We segment this map to
identify the spaces reachable by the bot (shown in grey in (b)). The path taken by the robot to create the map is shown in (c). This path
doesn’t provide sufficient coverage to create a diverse training set for DLoc. Therefore, we use a new path planning algorithm to optimize
coverage (covered regions shown in white in (d)). Axes in meters.

the robot doesn’t need to collect more data, this area is defined
as coverage. We choose RCSI to be the radius within which we
empirically observe minor change of the measured CSI. For the
robot, the objective is to cover most of the space with these circles
in the shortest time possible. To traverse the path with the shortest
time and most coverage4, we optimize our ratio of coverage over
path length, which we define as coverage ratio. This optimization is
known as the coverage path planning problem. However, finding
the most optimal path with the best coverage ratio is NP-hard [16].

To approximate the solution of this optimization problem, we
first randomly sample way-points across the space from a uniform
distribution. Now, our objective is to find an optimal path through
these way points while maximizing the best coverage ratio. Let’s
say we sample N points in our space as way-points.

Next, we observe and reject the points which lie on or within
0.5 m of detected obstacles to avoid collisions and obtain a filtered
set of N ′ points, defined by PF = {(xi ,yi ) |i ∈ [1, 2, 3, · · · ,N ′]}.
The most optimal path would search through all the possible paths
between these points in PF . This would not scale well with the size
of the space and this problem is NP-hard [16]. A simple solution
would be to iteratively sample a point within PF and chart a path
to it, all the while removing the traversed point from the set of PF
way-points, till we exhaust all the N ′ points in PF . Unfortunately,
this solution can result in extremely long and winding paths which
cover the same space multiple times. Instead of searching for the
most optimal path passing through all the N ′ way-points, we can
choose the path which passes through only d way-points closest
to our current location. Unfortunately, we observe that this purely
greedy solution is sub-optimal as it does not consider alternate paths
that may have better coverage ratio in the long run. To alleviate this
issue, we recursively search over them closest points that optimize
the coverage ratio, but to make this recursion computationally
feasible, we truncate the recursions at depth d . Hence, we obtain
a path from our current location, passing through d way-points
which is optimal overm-nearest neighbors.

To implement this intuition, we set up an m-ary tree up to a
depth d rooted at the origin. The nodes of this tree is a subset of
way-points in PF and the edges represent a physical path between
any two nodes. This physical path, which may need to circumvent
obstacles, is generated using the Probabilistic Road Map (PRM)
[30] algorithm. We use the path generated by the PRM to define a
coverage ratio and assign it to the tree-edge between these nodes.

4assuming that the bot moves with a constant velocity

1

2
3

4

Conference 
Room B
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Room A
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Dining Area

Figure 7:MapFind (left) is an autonomous robotics platform that
creates a map (right) for indoor navigation and collects ground
truth labeled CSI data for neural network training.

Having computed the coverage ratios for each tree-edge, we choose
a tree traversal which best maximizes for the coverage ratio and
determine the physical path. To further reduce re-traversal of the
space, we remove any way-points in PF which lie within a circular
neighborhood of RCSI of this optimal path. We take this optimal
path and set up another m-ary tree rooted at its final node. We
iteratively follow this algorithm till we exhaust all our way-points or
achieve a certain threshold for coverage ratio. The concatenation of
all these paths generated by these sequentialm-ary trees provides us
the most optimal path with the best coverage ratio and computation
complexity. MapFind traverses this optimal path to provide spatially
diverse location-labelled CSI data.

Additionally, data collection along these random paths mimic
typical user motion in any given environment. Thus enabling one
to explore time-series based localization, tracking, and navigation
approaches for location labeled CSI data, expanding the bounds of
research enabled by our open-sourced data.

4 IMPLEMENTATION
We describe details of our implementation below.

MapFind:We implement MapFind by mounting an off-the-shelf
wireless transmitter provided by Quantenna [47] onto the Turtle-
bot2 [55] platform, a low cost, open-source robot development kit.
As shown in Fig. 7, we mount the Hokuyo UTM-30LX LIDAR (2)
at an appropriate height to capture most of the obstacles in our
environment. We place the Astra Orbecc RGBD Camera [44] (3)
close to the LIDAR [23] and match their point clouds for accurate
registration. The Quantenna Wi-Fi card (1) is placed on an acrylic
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platform that rests in a layer above the LIDAR. This acrylic base is
supported by dowels mounted on the highest layer of the turtlebot
in such a fashion that they do not obstruct the LIDAR’s field of view.
Further note that the Quantenna is placed at a height where an
average user might hold their phone to collect representative data.
The Turtlebot 2 is controlled via Robot Operating System (ROS-
Kinetic) using a laptop equipped with 8th Gen Intel Core i5-8250U
mobile processor and 8GB of RAM (4), giving us access to a large
number of packages for SLAM and navigation. We use Probabilistic
Road Map [30] to chart an obstacle-free path with 75 nodes and a
maximum edge length of 3m. A key advantage of MapFind’s design
is that both the robot and the WiFi card can be replaced by suitable
alternatives making the design very flexible.

DLoc: Fig. 5 summarizes the design of DLoc’s Deep Neural Net-
work. We implement this architecture in PyTorch[1] while the
network architecture is inspired from the recent generator model
implemented in [28]. Especially the Resnet blocks implemented in
the design are borrowed from the author’s implementation in [28].
For all the layers in the network we do not use any dilation. For the
ConvTranspose2d layers, the parameter output_paddinд = 1. We
further employ InstanceNorm [56] instead of the standard Batch-
Norm layer for normalization as the recent research [56, 61, 63, 76]
shows better performance using InstanceNorm over batch normal-
ization for image-to-image translation networks.

For training our model, we use a learning rate of α = 1e − 5 with
no rate annealing, and maintain a batch size of 32 across the whole
set of experiments. We follow an Adam optimizer [33] schedule for
our gradient descent optimizer with L2 weight regularization with
weiдht − decay = 1e − 5. The regularization parameter λ = 5e − 4.

5 DATASET
In any deep learning model, the quality of the datasets plays a key
role. So, in this section, we go into the details of the data we have
collected to evaluate ourmodel.We deployMapFind in two different
spaces which together span 2000 sq. ft. area to acquire labeledWi-Fi
channel state information. The two spaces (Fig. 8) are real-world
deployments with rich multipath (plasma screens, concrete pillar,
metal structures, etc.) and non-line-of-sight scenarios. We deployed
off-the-shelf Quantenna APs in each space (4 in the larger area and
3 in the smaller one), which estimate the timestamped CSI data.
The Quantenna APs are scheduled to estimate channel once every
50ms. So, we navigate the MapFind robot at a constant speed of 15
cm/sec to avoid any doppler effects and also to be able to ping all
the APs for one location without causing drift in locations. These
channel estimates are then sent to a central server, and along with
MapFind’s ground truth estimates, this becomes the data on which
we train and test DLoc. We have collected data under a total of 8
different scenarios described below:

• We first deploy and test our algorithm in a simple space of 500 sq.
ft. with direct path available most of the time. We collect data in
this setup under three different scenarios at different times, two
datasets collected on different days with the basic setup shown
in Figure 8(a) and 1 extra scenario where we add reflector to the
given environment along the edge of the space.

• We also deploy and test our algorithm in a complex space of 1500
sq. ft. where AP 4 placed in the environment is hidden behind a
wall, thus collecting significant NLOS data. Furthermore, the wall
of plasma television screens behind AP3 creates a multipath rich
environment. We collect data in this setup under five different
scenarios at different times, two datasets collected at different
times of a day with the basic setup shown in Figure 8(b) and the
4 different scenarios with different settings of furniture as shown
in Figure 12.

In each of these scenarios we let the bot explore the space for about
20 minutes to simultaneously map and collect CSI data across all the
access points in the given environment. With this setup we collect
about 13,100 data points for a given scenario on an average. Thus
we collect about 105,000 datapoints overall in multiple scenarios
that are diverse in space and time. We split this dataset into multiple
parts to appropriately train and test the network for each of the
experiments mentioned in section 7.

6 MICROBENCHMARKS
Before we delve into the evaluation of DLoc and MapFind, let’s
start with few microbenchmarks. In particular, we show the output
of the consistency decoder and the final location estimate for a
given set of input heatmaps for 40MHz bandwidth signal from
all the 4 APs. These results are when the network is trained and
tested on data from the setup shown in Figure 8(a). Where DLoc’s
network has been trained as described in Section 2.3. In Fig. 9 we
show sample inputs from the 4 APs to DLoc network in the top, the
corresponding outputs from the consistency decoder below them
and their corresponding targets at the bottom. The images shown
are generated during test time at a location which the network has
not seen during its training phase. The green cross is the ground
truth label for this specific record of data, while the blue cross is
the location predicted by DLoc’s location decoder output image.
Further in the images shown the brighter the pixel value the higher
the likelihood. We highlight four aspects of these images below.

Offset Removal:We first analyze the performance of the consis-
tency network in removing the ToF offset. As can be seen from the
first row of images, the input heatmaps to DLoc’s network have
offset, in that the peaks of the maxima do not coincide with the
ground truth label, though the direction of the peak looks accurate.
It can also be observed with the right amount of shift of the peak
along the correct direction will make all of the maxima across the 4
AP heatmaps to coincide at the correct user location. That is exactly
what we want the consistency network to learn. As we can see in
the bottom row of images corresponding to the input heatmaps, the
peaks of the heatmap images now coincide with the correct location
of the ground truth label. Thus, we can see that the consistency
decoder has corrected for the ToF offset for each heatmap image by
enforcing consistency across all the images through the consistency
loss.

Multipath resolution:Apart fromToF offset removal, DLoc should
also be able to resolve multiple paths and identify the direct path, for
which we can observe the input and consistency decoder’s output
of AP4. As shown in the figure, AP4 suffers from severe multipath.
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Figure 8: DLoc’s Basic Deployment: The training environment and train and test data points collected in (a) A simple environment that
spans 500 sq. ft. space with 4 access point.(b) A complex environment that spans 1500 sq. ft. space with 4 access points.
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Figure 9: Micro-benchmark: Outputs of DLoc’s consistency decoder show that DLoc achieves multipath resolution, corrects for the ToF
offset and performs super-resolution for lower than 80MHz bandwidth signals. The green ’+’ shows the ground truth label reported by
MapFind and the blue ’x’ shows the Location predicted by DLoc.

Because of this, we can see two clear maxima along with two dif-
ferent angles in the input heatmap. The location estimate chosen
by the location decoder is towards the correct angle as can be seen
by the blue cross overlapping with the green cross corresponding
to the ground truth label. This shows that the network can learn to
resolve the correct path from multiple paths.

Bandwidth Super-resolution:As discussed earlier, we have trained
the consistency decoder with target heatmaps corresponding to
80MHz bandwidth signal, while the input heatmaps to the encoder
belong to 40MHz bandwidth signal for the same location. This train-
ing approach should enable the network to learn super-resolution to
better resolve multiple paths in the environment. Now let us focus
on the input heatmap of AP2 and the corresponding output of the
consistency network. We can observe that the input heatmap on the
top has a more wide-spread likelihood maxima, while the bottom
image apart from ToF offset removal also shows a tighter likeli-
hood maxima. This proves that the training procedure employed
for DLoc helps us in achieving super-resolution and generalization
over various signal bandwidths of the user as further discussed in
Section 7.2.

Evidence for generalization across space:As mentioned earlier,
this specific location that we show these images for has not been
encountered by the network during the test phase, unlike in fin-
gerprinting where every location is looked at at least once. We still

observe from these images that the network generalizes the off-
set removal, multipath-resolution, and bandwidth super-resolution
across the space in the locations the network has not been trained.
We can further observe from the outputs of AP4, where though
the target image does not have the peak at the correct location due
to the lack of direct path, the network corrects for the case thus
giving an appropriate location output by looking at the consistency
across all the 4 APs. Thus, these sample images become an initial
evidence to the generalization of DLoc which is further shown in
Table 1 and detailed in section 7.2.
7 EVALUATION
The labeled data described in 5 is used for training DLoc. We com-
pare DLoc to two baselines: SpotFi [34] and a baseline deep learning
model [5]. For both these baselines, we do a best-effort reimplemen-
tation of the respective systems. To evaluate DLoc on the simple
environment, the training and test data are taken from the same
dataset where the 70% is used for training and the 30% for test-
ing. Similarly for the complex environment we train on 80% data
collected on two different time instances and test on the rest 20%.

7.1 DLoc’s Performance
The outputs of DLoc are 2D images with location intensities. We
take the index of the maximum value in these images and scale
it down with the grid size to get the location estimated by DLoc.
We report the distance between DLoc’s estimated position and
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Figure 10: DLoc Results: DLoc outperforms state-of-the-art mod-
els (SpotFi and Baseline DL model) in localization (a) in a simple
500 sq. ft. space and (b) in a complex 1500 sq. ft. space
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Figure 11: Ablation Study: Dloc’s performance with and without
consistency decoder in both (c) Simple Environment (500 sq. ft.)
and (d) Complex Environment (1500 sq. ft.)

the actual ground truth label provided by MapFind. We show the
CDF of these errors for DLoc’s location estimates in Fig. 10a,b and
compare these results with the state-of-the-art SpotFi baseline and
a Baseline DL model.

For Fig. 10a, the experiments are conducted under a smaller
simpler space of 500 sq. ft. with only 3 access points. From the
results in this smaller space we can see that while SpotFi and DLoc
have almost the same median error of 36cm, DLoc outperforms
SpotFi by 2× at 90th (and 99th) percentile. While DLoc achieves
70cm (and 1m) localization error at 90th and 99th percentile, SpotFi
goes up to 140cm (and 2m), Further we can see that Baseline DL
model performs much worse than even SpotFi at both median
and 90th percentile, with the decrease in number of total receiver
antennas (3 APs with 4 antennas each).

From the Fig. 10b, we can clearly see that in a complex space of
1500 sq. ft., where the median localization error for DLoc is 64cm,
the median localization error for SpotFi is 110cm and Baseline DL
model is 126cm. Further, we make a case that DLoc can characterize
a given environment and thus achieve lower errors at 90th (and
99th) percentile. This can now further be validated with the results
in Fig. 10b, where the 90th (and 99th) percentile localization error
for DLoc is 1.6m (and 3.2m) the same for SpotFi goes up to 3m (and
4.8m) and for the Baseline DL model goes up to 2.8m (and 4.5m).
Therefore, DLoc outperforms the SpotFi algorithm and Baseline DL
model at both the median and 90th percentile.

Further, to understand the importance of the consistency decoder,
we train and test the encoder with just the location decoder (without
consistency decoder) and plot the results in Fig. 10c,d. We can see
that in the absence of the consistency decoder, the performance of
the network goes down (error goes up from 36 cm to 48 cm and 65

(a) (b)

(c) (d)
Figure 12: Multiple Furniture Setups:We test the generalizabil-
ity of DLoc across multiple setting of Complex Environment shown
in (a), which we refer as Furniture Setup-1 (no furniture) (b) Furni-
ture Setup-2, (c) Furniture Setup-3, (d) Furniture Setup-4. Furniture
highlighted in ‘red’ and reflector highlighted in ‘blue’

Trained Tested Median Error (cm) 90th%ile Error (cm)
Setup Setup DLoc SpotFi DLoc SpotFi
1,3,4 2 71 198 171 420
1,2,4 3 82 154 252 380
1,2,3 4 105 161 277 455

Table 1: Complex Cross Environment Testing: Median and
90th percentile errors when trained and tested on across differ-
ent setups of the complex environment as shown in Fig. 12.

cm to 80 cm) in Fig. 10c and Fig. 10d respectively. This is because it
becomes harder for the network to model the environment due to
inconsistent inputs being supplied to it.

7.2 DLoc’s Generalization
To understand what DLoc is learning, it is important to understand
the generalizability of the network and to do that, we look at three
specific scenarios of generalizability.

Across Furniture and Reflector Motion: In a daily office setup
scenario, the furniture would move around once in a while and it
is important that our algorithm does not break with slightest of
changes in these objects. We set up 5 different scenarios for our case
study. In Setup-1, there is no furniture. In scenario 2-4 we added
some furniture and changed the furniture’s position around for
each scenario as shown in Fig. 12. Additionally in Setup 4, we place
the furniture as is in Setup-3 and add an additional 1.5 m × 2 m
reflector to the environment. These variations in the environment
add more NLOS scenarios than the original Setup-1 (especially in
Setup-4 with an additional reflector in the field). For this setup, we
do cross testing where we train on different setup’s data and test on
a completely different setup’s data. The median and 90th percentile
localization errors are reported in Table 1. From this table, we can
see that DLoc is robust to furniture motion. It deteriorates slightly
when an additional reflector is added, when there are increased
NLOS data points, but is still more robust than SpotFi.

Across Bandwidths: As mentioned earlier, the user device does
not always have access to higher bandwidths, and thus we train our
network on different bandwidth data all the while retaining 80MHz
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Figure 13: Generalization: DLoc’s performance generalizes to
inputs from (a) different bandwidths and (b) different space overlaps.

target images for the consistency decoder. Doing this makes the
network learn "super-resolution" of the given image as discussed in
Section 6. Here we show the performance of DLoc when different
bandwidth signal input heatmaps are given as inputs to the net-
work. As shown in Fig. 10e, we can see that the median localization
error decreases marginally for DLoc from 65cm for 80MHz to 72cm
for both 40MHz and 20MHz signal data. In contrast, SpotFi could
achieve a median error of 110 cm even with 80 MHz of bandwidth.
This shows that DLoc can effectively operate with input data of
varying bandwidth.

Across Space: Though MapFind’s path-planning algorithm opti-
mizes the coverage of the given environment, we cannot always
cover each and every location on the map. This makes it impor-
tant to look at DLoc’s generalizability across space. To quantify
this, we split the training and testing datasets into two disjoint
spatial regions. The path segment covered in the region belonging
to X ∈ (10m, 14m), Y ∈ (6m, 8m) is used for testing, while the rest
of the path’s data is used for training the network. We compare
this scenario with a joint training scenario when the training and
test points are sampled from the entire space and show the com-
parative results in Fig. 10f. We can see that the disjoint training
and testing very closely follows the trend of the joint training and
testing, showing the generalizability across spaces of DLoc in a
given environment.
7.3 MapFind’s Performance
Ground Truth Accuracy: We test the accuracy of the ground
truth reported by MapFind by using a HTC Vive VR system. The
HTC Vive performs outside-in tracking and hence provides accu-
racy upto mm-level in dyanamic scenarios [8]. We test two SLAM
algrithms – RTAB-Map and Cartographer [21] – in a 4m × 4m envi-
ronment, the maximum allowed grid size by HTC Vive. We find the
median error to be 5.7 cm and 7.3 cm for RTAB-Map and Cartogra-
pher respectively and report the errors in Fig. 14. Since RTAB-Map
performs slightly better, we use RTAB-Map for MapFind’s design.

Impact of Label Errors on DLoc: Since our labels (obtained
using MapFind) have a median error of 5.7 cm, we wish to study
the impact that this has on DLoc, since DLoc is trained using these
labels. To achieve this objective, we design a simple experiment.
We use the HTC Vive to collect a dataset of 2500 points in a 4 m ×
4 m space in the larger environment. We use both MapFind and the
VR system to train DLoc and tabulate the test errors in Table 3. As
shown, the impact of the errors in labelled data is minimal. This
is primarily because of the high accuracy achieved by MapFind.
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Figure 14: MapFind’s Accuracy: We use MapFind to generate
labelled data for training DLoc Ṫhis figure shows the accuracy of the
labels generated by MapFind using two different SLAM algorithms.

Algorithm Path Length (m) Coverage
Path Length (km

−1)
Multi-Agent (ours) 322.5 2.35

Greedy 378.1 2.15
Random Walk 851.5 1.04

Table 2: Performance of MapFind’s Path Planning Algorithm

Trained with Median Error (cm) 90th%ile Error (cm)
DLoc SpotFi DLoc SpotFi

VR 89 173 171 316
MapFind 94 172 187 316

Table 3:DLoc trained on MapFind’s and VR system’s reported loca-
tion and compared against VR system’s locations; SpotFi compared
against both VR and MapFind’s reported locations

Finally, note that, while the VR system is more accurate, it is limited
in the range it can cover. Therefore, we limit our evaluation in this
subsection to a 4 m × 4 m space.

Path Planning Performance: To characterize the performance
of our path planning algorithm, we compare our performance with
a naive random-walk approach and a Greedy graph traversal ap-
proach. We fine-tune the greedy algorithm for its best performance.
For the multi-agent search, we set the number of neighbors,m = 5,
the radius of coverage, RCSI = 70cm, and the depth of search, d = 5,
to lower computational overhead. Our path length and coverage
to path length ratio are characterized in Table 2. As shown, our
path planning algorithm can reduce the path traveled as well as
optimize the coverage as compared to a random walk and greedy
algorithms. This allows MapFind to efficiently collect data for new
environments.

8 RELATEDWORK
Our work is related to and draws on three lines of research:

Indoor Mapping: SLAM is well studied for creating maps in in-
door and outdoor locations and is used by Google cars, Clearpath
robotics, Sanborn, and other organizations [12, 18, 22, 51, 54]. Most
of these mapping platforms focus only on building maps and pri-
marily rely on GPS for location. A subset of SLAM platforms [20, 24]
use Wi-Fi, but they collect coarse-grained information like signal
strength. In contrast, we instrument a WiFi platform which can ex-
tract detailed fine-grained information about the wireless channel
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like channel state information, which is quintessential to achieving
accurate indoor localization. Furthermore, we develop a new path
planning algorithm that optimizes the time required for collecting
training data in a given environment.

More concretely, in the world of path planning, there exists
coverage path planning (CPP) [9] and map exploration (ME). CPP
algorithms generate structured paths achieving coverage of around
95%, whereas ME algorithms use Probabilistic Road-Maps [30] or
Rapidly-searching Random Trees (RRT) [39] to randomly explore
the map to find a route between two points. Since we want to
produce a pseudo-random path, we perform a multi-agent search
up to a depth,d on paths generated by a PRM, essentially borrowing
ideas from both CPP and ME.

WiFi Localization:WiFi-based localization is a well-studied topic
with extensive work ranging from RSSI based localization [7, 11,
45, 69, 77] to channel state information (CSI) based localization [2,
3, 29, 34, 35, 46, 57, 60, 64–68, 70]. In recent times, it has been estab-
lished that CSI works better for localization achieving sub-meter
median accuracies [34, 57]. However, CSI-based WiFi localization
algorithms suffer from problems caused by the environment (such
as multipath effect, non-line of sight, etc.). These problems have
been extensively studied in literature [3, 29, 34, 35, 57, 64–68]. The
typical solution to these problems has been to design heuristics
to identify the direct path and to try to subdue the effects caused
by the environment. This approach fails when the direct path is
completely blocked or when the environmental effects shift the in-
ferred location of the direct path. We take a different approach. We
use deep learning to implicitly model the environment and to use
this model to predict correct locations. Thus even when the direct
path is blocked, our model can use reflected paths for positioning.
As we show in our results, this allows us to achieve better median
accuracy as well as better 90-percentile and 99-percentile accuracy.

There has been some recent work in localization using deep neu-
ral networks [5, 13, 43, 62, 75]. We differ from this work along four
axes. First, instead of using complex-valued wireless channels as
inputs to neural nets, we frame our problem as an image translation
problem. This allows us to leverage the state-of-the-art image trans-
lation research (which is known to outperform complex-valued
neural networks). Second, we explicitly model the effects caused
by off-the-shelf devices like time-of-flight offsets. This allows us to
model consistency into the network, thereby allowing it to learn
about objects in the environment. Third, CSI data varies randomly
even with minute changes to the environment but representing
them as XY images removes this randomness and helps us model
the environment better for localization. Finally, we augment our
algorithm with an automated data collection platform that can ef-
ficiently collect data for a new environment, making our system
easy to deploy. Using MapFind and DLoc together, we enable large
scale real-world data for WiFi-localization. In the future, we hope
everyone can use our data to form a standardized test.

Deep learning for Image translation: Our key insight of repre-
senting channel state information as two-dimensional images helps
us to pose all of our localization algorithms as image-to-image
translation problems. This representation allows us to use exten-
sive literature on image-to-image translation that has been very

well studied in the computer vision community [28, 38, 52, 72, 76].
These algorithms have utilized generator models paired with ap-
propriate targets and loss functions to solve many image-to-image
translation problems like image denoising [10, 71], image super-
resolution [15, 28, 32], image colorization [27, 31], and real-to-art
image translations [26, 27, 76]. While there has been some work
that utilizes rf-based techniques that utilize machine learning to
solve through-wall human pose estimation [58, 73, 74], our paper
is the first to present general principles for using ideas of image-
to-image translation for the localization problem. Specifically, the
data distribution of the indoor WiFi localization data is different
from all image translation work, and RF-based pose estimation data.
Thus, we define a tailored target and loss functions. Moreover, we
create mechanisms to model Wi-Fi specific issues like time-of-flight
offsets. Finally, we note that our model is adaptive enough to in-
corporate future advances in image-to-image translation research.
In short, we can use ideas of the loss function and the training
procedure to apply to GANs [17] and any future developments on
image-to-image translation algorithms.

9 LIMITATIONS AND FUTUREWORK
This paper presents: (a) DLoc: a deep learning model for indoor
localization, and (b) MapFind: an autonomous mapping platform
that also collects training data for DLoc with minimal human effort.
Together, these platforms provide a framework for indoor naviga-
tion. We conclude with a discussion of the limitations of our current
design and ideas for future work:
• Our robot is limited to 2D mapping, and we perform 2D localiza-
tion. Some applications, like indoor virtual reality, might require
3D localization and mapping. We believe our model allows for a
natural extension to 3D, by replacing 2D images with 3D images
(similar to how videos are modeled in computer vision research).
However, this extension remains a part of future work.
• The speed of the robot is 15 cm/s which limits our data collection
efficiency. Faster robots can reduce the data collection time to a
few minutes. However, we opted for cheaper robots to ensure
that the system can be easily replicated and used by others in the
community.
• Our model relies on AoA and ToF information. Recent works [64,
65] have used other information like angle-of-departure, doppler
shift, etc. Utilizing this information will present additional data
to the network, and is a part of future work.
• In the future, we plan to build on our work to demonstrate large
scale, real-time, location-based applications for entire buildings
and shopping malls.
• Past work like [57] has shown that localization systems relying
on angle of arrival and time-of-flight achieve similar performance
with human-held devices and robotic devices like drones. Since
DLoc relies on this information at the input, we expect it to
generalize to human-held devices. However, we acknowledge
that there might be additional effects that might not have been
modeled in the deep learning architecture and is a limitation of
DLoc and is exciting possible future work.
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