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ABSTRACT

Autonomous perception requires high-quality environment sensing

in the form of 3D bounding boxes of dynamic objects. The primary

sensors used in automotive systems are light-based cameras and

LiDARs. However, they are known to fail in adverse weather condi-

tions. Radars can potentially solve this problem as they are barely

affected by adverse weather conditions. However, specular reflec-

tions of wireless signals cause poor performance of radar point

clouds. We introduce Pointillism, a system that combines data from

multiple spatially separated radars with an optimal separation to

mitigate these problems. We introduce a novel concept of Cross

Potential Point Clouds, which uses the spatial diversity induced by

multiple radars and solves the problem of noise and sparsity in radar

point clouds. Furthermore, we present the design of RP-net, a novel

deep learning architecture, designed explicitly for radar’s sparse

data distribution, to enable accurate 3D bounding box estimation.

The spatial techniques designed and proposed in this paper are

fundamental to radars point cloud distribution and would benefit

other radar sensing applications

CCS CONCEPTS

•Hardware→ Sensor applications and deployments; • Com-

puting methodologies → Scene understanding; Neural net-

works; • Information systems → Sensor networks.
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1 INTRODUCTION

Autonomous vehicles require a high-quality geometric percep-

tion [18, 19, 42, 53] of the scene in which they are navigating,

even in adverse weather conditions. Most of the existing computer
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Figure 1: a) Single radar misses the reflective surface due to specular

reflections (red). b) Multi-radar setup with optimal separation receives

reflections back almost surely from the reflective surface (green).

vision algorithms and data-driven techniques rely on high resolu-

tion, multi-channel LiDARs [5, 44, 51, 55] to construct accurate 3D

bounding boxes for dynamic objects. LiDAR is a light-based sensor

which measures the reflection of the light signal to perceive the

geometry of the scene, creating dense 3D point clouds. However,

LiDAR cannot penetrate through fog and dust, causing the sen-

sor to fall prey to adverse weather conditions [6, 8, 9]. In contrast,

radars are a robust sensing solution, which transmits millimeter

waves (mmWaves) and remain less affected by adverse weather

conditions [3]. The wavelength of mmWaves allows them to easily

pass through fog, dust, and other microscopic particles.

Although radars are all-weather reliant sensors, they need to

provide LiDAR-like high-quality perception performance to enable

adverse weather perception. However, a challenge with the radar

is that it cannot create dense point clouds like LiDAR. The primary

reason is that an automotive radar emits mmWave signals, which

reflect specularly off of surfaces unlike light signals which scatter

in every direction, allowing only a fraction of incident waves to

travel back to the radar receiver, as shown in Figure 1. Even a

high angular-resolution automotive radar suffers from the curse

of specularity and would only create a sparse point cloud with

insufficient information for precise bounding box estimation. To

further exacerbate the issue, radar data contains structured noise

due to sensor leakage, background clutter, and multi-path effects.

The noise pollutes the point clouds by causing unwanted points

to appear in the scene point cloud. This leads to inaccuracies in

identifying the number of objects in the scene by increasing false

detections.

In this work, we propose Pointillism, a system that enables radars

to overcome the challenges posed by specular reflections, sparsity

and noise in the radar point clouds, to provide high-fidelity per-

ception of the scene with 3D bounding boxes. Pointillism consists
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of multiple low-resolution radars placed in a optimal fashion to

maximize the spatial diversity and scene information. Pointillism

combines this spatial diversity with novel multi-radar fusion algo-

rithms to tackle the problem of specular reflections, sparsity and

noise in radar point clouds. Building upon the hardware and algo-

rithms, Pointillism also introduces a novel data-driven approach

that enables the detection of multiple dynamic objects in the scene,

with their accurate location, orientation and 3D dimensions. Fur-

thermore, Pointillism enables such perception even in inclement

weather, thereby paving a way for radar to be the main-stream

sensor for autonomous perception.

A natural question is how does Pointillism overcomes the physics

of wireless signals i.e., specularity. Pointillism’s key idea to over-

come specular reflections is to use multiple radars placed at spatially

separated locations overlooking the same scene and illuminate an

object in the scene from different viewpoints. This, in turn, in-

creases the probability of receiving a reflection back from multiple

points/surfaces of the object, which single radar could have missed,

as shown in Figure 1. Pointillism formulates the problem of optimal

placement of multiple low-resolution radars as an optimization

problem to achieve multiple reflection points from a vehicle at all

orientation. The optimization reveals that the optimal radar place-

ment of around 1.5 meter apart (typical width of a car) to achieve

high-fidelity in the estimated pose of the surface.

A good placement ensures spatial diversity in the point clouds,

but noise is still a major challenge. Pointillism presents a novel

multi-radar fusion algorithm that reduces the noise points to enable

accurate detection of multiple dynamic objects. The insight is to

use spatial diversity generated by multiple radars to reduce the

noise and enhance points corresponding to actual dynamic objects

(eliminate noise). A naive approach to leverage spatial diversity

would be to translate the point clouds collected by each radar of

the multiple-radar to a common frame of reference and combine

them to densify the radar point cloud. However, this approach adds

up the noise points as well, doesn’t reduce the noise and misses

out on the crucial information encoded in the spatial locations of

radars.

We make a key observation that across multiple viewpoints

(radars), the noise points appears independent of each other in

space and the points belonging to actual surface/object appear at

nearby location consistently in most of the views (radars). To best

leverage the observation, we create a space-time coherence based

framework for combining of 3D point clouds from multiple radars.

The output is a novel representation of Cross Potential Point Clouds

that have the information regarding the confidence of each point

coming from an actual object as soft probability value, along with

all the properties of a point cloud.

With the knowledge of confidence estimates for the points, we

can infer whether they belong to objects or noise. However, merely

identifying all the relevant points out of noise is not sufficient for

multi-object 3D bounding box estimation. Firstly, depending on the

distance, orientation, and the exposed surface of an object, only a

limited set of points could be captured by the radar. Secondly, in a

scene with multiple objects, precise 3D bounding box estimation

requires segmenting out the points belonging to each object. This

results in massive uncertainty in the exact orientation and the

location of the bounding box.

A naive approach to solve for uncertainty could be to design

hand-crafted features by taking into account the shape and size

of the vehicles and all possible orientations. However, such an

approach is not trivial because crafting the features that can incor-

porate all possible cases is very challenging. Our insight here is that

a data-driven method could potentially solve this problem by build-

ing experience over time and learn the non-uniform distribution of

radar point clouds.

We reap the advantages of data-driven learning for precise 3D

bounding box estimation and propose a novel deep learning-based

approach RP-net, that leverages the sparsity of Cross Potential

Point Clouds. RP-net combines the two problems of point cloud seg-

mentation and 3D bounding box location estimation in space, and

performs a region of interest (RoI) based classification. However,

picking RoIs uniformly throughout the 3D space is not computa-

tionally feasible. So, we define a unique set of anchor boxes that

allow us to iterate over all the possible configurations of bound-

ing boxes over sparse point clouds. Further, our experiments show

that with this set of anchor boxes, we can exhaustively cover all

the configurations while efficiently reducing the search space. Our

solution is an end-to-end trainable network, which can easily be

deployed for real-life testing.

It is well known that a data-driven approach needs a lot of data

for training and validation. To the best of our knowledge, no publicly

available dataset contains data from multiple low-resolution radars

with overlapping field of views. Due to the lack of data, we built

an automated data collection platform with multiple radars along

with a LiDAR and a depth camera for ground truth labels of scene.

Pointillism achieves a median error of less than 37cm in local-

izing the center of an object bounding box, and a median error

of less than 25cm in estimating the dimensions of the bounding

boxes. Moreover, Pointillism achieves an overall mAP score [23] of

0.67 with an IoU threshold of 0.5 and 0.94 with an IoU threshold of

0.2 for estimating 3D bounding box, which is comparable with the

state-of-the-art bounding box estimation techniques [44, 50, 51]

using LiDARs. Furthermore, with our approach, the mAP values

increase to 0.67 compared to 0.45 for a single radar system. This

means that Pointillism improves the performance by 48% with its

multi-radar fusion compared to a single radar. RP-net can make

inference at a frame rate of 50Hz which is well beyond the real-time

requirements.

In summary, our contributions are as follows:

• We propose Pointillism, a new framework for radar per-

ception that leverages spatial diversity induced by multiple

radars and optimizes their separation, to counter the funda-

mental challenge of specular reflections in mmWave radars.

• We conceptualize the notion of Cross Potential Point Clouds

by utilizing space-time coherence on point clouds from mul-

tiple radars, to reduce the noise in radar point clouds, thereby

increasing quality of signal.

• We provide the design of RP-net, a novel deep learning frame-

work, designed to leverage the non-uniform distribution of

radar point clouds, and estimate precise 3D bounding boxes

on Cross Potential Point Clouds.

• We build the first real-world dataset of labeled radar point

clouds from multiple radars with overlapping field of view,

that contains 54K radar frames and corresponding LiDAR
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Figure 2: Point-cloud of a scene with one target car using multiple

radars (red triangles and green dots are two different radars, blue

points are from LiDAR). Multiple such target vehicles could be present

in the scene. Figure shows noisy radar points generated due to clutter

and multipath effects, and their independence across two radars.

point clouds and RGB images in good/bad weather condi-

tions. We believe that this dataset would enable innovation

in a variety of sensor-fusion approaches.

2 BACKGROUND AND CHALLENGES

In this section, we briefly describe the point cloud generation pro-

cess used in the current automotive radars and outline the chal-

lenges involved in working with radar point clouds.

2.1 Radar Processing Pipeline

FMCW (Frequency Modulated Continous Wave) technique has

become a standard in the automotive radar market for point cloud

generation and velocity estimation [1, 39]. Additionally, multiple

transmit and receive antennas are used for the angle of arrival

estimation using beamforming. We would refer the reader to [1]

for a detailed description of the entire point cloud generation. The

resolution in range and angle estimation in FMCW depends on

the bandwidth of operation and the number of available antennas,

respectively.

The current market trend is to achieve higher angular resolution

by using several co-located antennas and improve bounding box

estimation performance. However, radar point clouds are affected

by more fundamental challenges that inhibit the bounding box esti-

mation performance on radar data. In the next section, we describe

the challenges with radar point clouds and discuss how they affect

the bounding box estimation performance.

2.2 Challenges in radar point clouds

Millimeter wave sensing has enabled high resolution radars for

automotive sensing but it has its own perils. There are three main

challenges faced in mmWave sensing:

(a) Specular reflections: For an incident electromagnetic wave

on a surface, the size of its wavelength compared to the roughness

of the object’s surface determines the degree of scattering of the

wave. mmWaves undergo a negligible scattering effect, resulting

in a specular reflection (angle of incidence = angle of departure)

from the surfaces. Consequently, for a small aperture radar, a lot of

reflected signal does not make its way back to the sensor, causing

Figure 3: Overview of Pointillism. PC: Point Cloud

blindness of the objects. This blindness is even independent of the

resolution capabilities of the sensor.

(b) Radar clutter and noise: Radar detections are commonly

known to be polluted by signals from clutter, noise, and multi-

path effects. Radar clutter is defined as the unwanted echos from

the ground or other objects like insects that can be confused with

the objects under consideration. In a congested environment like

cities, a signal emitted by a radar sensor could suffer multiple reflec-

tions before coming back to the sensor. The result is the formation

of ghost objects, which are reflections of actual objects in some

reflector formed because of multipath(Figure 2).

(c) Sparsity: Outdoor scene point clouds are inherently sparse due

to the empty volume between the objects, which are at a substantial

distance from each other. Additionally, due to different interaction

properties of mmWaves with different objects (non-uniform inter-

actions), this effect is compounded in the case of mmWave radars.

The result is a sparse and non-uniform point cloud (Figure 2).

Pointillism aims to tackle each of these challenges and provide

accurate bounding boxes. Our approach towards achieving this

goal is to couple multiple radar fusion with a novel noise filtering

algorithm and estimate the bounding boxes. Figure 3 shows an

overview of our entire processing pipeline.

3 MULTI-RADAR PERCEPTION

Specular reflections of millimeter waves can cause direct blindness

of object surfaces, which could lead to fatal accidents. To better

scrutinize the effect of specularity, we need to understand the dis-

tribution of a radar point cloud. Point cloud generated by a radar

dependsmainly on two aspects: geometry of the scene and resolution

of the radar (figure 6b). Importantly, the adverse effect of specular

reflections is a geometric shortcoming and can not be tackled simply

by increasing the resolution of the radar.

3.1 Studying Radar point clouds

To study the effect of scene geometry, we need to consider radars

with a perfect resolution that can resolve any two reflections which

are arbitrarily close to each other. We use a high-fidelity EM wave

propagation tool Wireless InSite to model the EM wave interac-

tions [37]. Our experiments using a 1-degree radar (section 8), and

the results in past work [48], show that the radar reflection charac-

teristics obtained from these simulations are similar to a real-world

radar. We create simulations using a CADmodel of a car along with

its material properties. We create multiple simulations by placing
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Single 0.5m 1m 2m 3mGT 
orientation

Figure 4: Wireless Insite simulations: Point clouds with single radar

or smaller separation could lead to ambiguity in pose of the car which

gets eliminated by increasing radar separation. Orange and blue points

are from 2 different radars.

Figure 5: Comparison of average error in radian between single and

multiple radars. For a separation greater than 1.5m, the performance

improves.

the car at several locations in an area of 10m×10m in front of the

radar(s). At each location, simulations are created for multiple ori-

entations(angles) of car, spanning 360 degrees in 36 discrete steps.

For each placement and orientation, we consider two radar setups:

Single radar and Two radars with varying separation distance. In sim-

ulations, the radars can resolve all the rays returning to the receiver

(perfect resolution). With this, we can independently compare how

the geometry of the scene affects performance.

3.2 Performance comparison of single and
multiple radars

For a rectangular bounding box of a car, the system that captures

more surface points (less affected by specularity) would perform

better in estimating the bounding box’s orientation. To estimate

the orientation angle of the box from point clouds, we use an MLP

(multi-layer perceptron) regressor from scikit-learn [41] trained on

the data generated from the simulations. MLP regressor takes a

simulated point cloud as input and outputs the orientation angle of

the car. Figure 5 shows the comparison of performance in terms of

the mean error made in angle estimation. We make two important

observations from these results. Firstly, the results show that the

two radar system outperforms the single radar system. Secondly,

a more interesting observation is that there is a sharp increase in

performance between the separations 1.5m and 2m. It remains rela-

tively constant before and after. The width of the car we used in

simulations is ≈ 1.7m, which is the width of a standard car. Hence,

the results show that the optimal distance between two radars for

estimating a bounding box on a vehicle should be comparable to

the vehicle’s width. Figure 4 further shows how increasing the sep-

aration between radars would improve the point cloud generated.

Figure 6: (a) Regions of reflection on a car. (b) Specularity vs Resolu-

tion: In the observed point cloud, point 3 is missing due to specular

reflection while point a is formed from points 1 & 2 due to limited

resolution.

What do multiple radars bring to the table? Based on our

analysis following are the key benefits of using multiple radar

system:

• Larger Virtual Aperture:The reflections arriving from a car

originate from specific scattering points around the car (e.g.,

wheelhouses, corners) [14, 27]. Each scattering point has a spe-

cific visibility region (Figure 6a). Multiple radars present at spa-

tially separated locations create a larger virtual aperture, thereby

capturing more of these reflecting centers. Occluded parts of an

object from one viewpoint would appear in the other viewpoint,

inherently increases the probability of capturing more meaning-

ful points. This increase directly impacts the system’s orientation

estimation performance, as is evident from the results.

• N times the number of points: One obvious advantage of hav-

ing multiple sensors is the increase in the number of points,

which would densify the sparse point cloud.

• Rich Spatial Diversity: A larger virtual aperture with multiple

radars provides rich spatial diversity. In the next section, we

would show how this spatial diversity could be used to curb

noise by building confidence for the points in the point cloud.

4 CROSS POTENTIAL POINT CLOUDS

Multiple radars work together to overcome the challenges posed by

specular reflections of mmWaves by providing rich spatial diversity.

However, noise (due to clutter, multi-path, and system noise) still

presents a big challenge for object detection from radar point clouds.

The noise points misguide object detection and introduce false

positives. A single radar has fundamental limitations in removing

noise. The features corresponding to the Cartesian coordinates, e.g.

(x,y,z) and velocity, can provide a rich context for object detection.

However, they do not provide information necessary to segregate

the noise.

In this section, we would introduce a novel representation of

Cross Potential Point Clouds, formed by the fusion of multiple radar

point clouds. Our key observation is that points belonging to noise

are independent across multiple radars placed at different spatial

locations. In other words, points belonging to an actual object are

more likely to be present in the point clouds of more than one

radar. In contrast, the points belonging to random noise are specific

to each radar. By leveraging this observation, we design a novel
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Figure 7: Formation of ghost clusters due to multipath. The centroids

in the ghost clusters are more separated in comparison to the centroid

of target cluster and given low potential values in Cross Potential

Point Clouds.

algorithm that filters noise from radar point clouds and creates low-

noise Cross Potential Point Clouds. In the following subsection, we

would describe how we can use the data from multiple radars to

encode information regarding noise.

4.1 Space coherence with Radar point potential

Noise harms the bounding box estimation as it creates false posi-

tives. Our key insight on tackling noise takes inspiration from sig-

nal processing techniques. In signal processing, we collect multiple

noisy data stream and take their average to reduce the noise vari-

ance and improve the overall SNR (signal to noise ratio). The idea is

that the signal present in each data stream adds up coherently. At

the same time, the noise is random and will not add constructively.

While the idea is intuitive, it is non-trivial to extend it to the point

clouds. We cannot simply add point clouds from multiple radars

in the hope to reduce noise because of the following reasons: (1)

The 3D point cloud is sparse and incoherent in space, i.e., multiple

radars may capture different points in 3D space for the same target

object. (2) It is hard to build confidence for every point, whether it

contributes to the object bounding box or corresponds to the noise

point (generated by clutter or multi-path).

To apply the space coherence in the point cloud domain, we use

the geometric information of point clouds. The above insight prop-

agates to the fact that if a region of 3D space generates a response

in multiple radars, it is likely to be generated from an object and

not noise. To capture this effect, we need to measure the coherence

between point clouds originating from multiple radars across 3D

space. As shown in Figure 6, radar points from an object are clus-

tered around some scattering regions on a vehicle. By identifying

these clusters, we can define our confidence of a point being gen-

erated from an object by looking at the same scattering region in

multiple radar point clouds (space coherence). Our approach runs

in two steps: (a) Clustering the point clouds and (b) Enforcing space

coherence by defining cross-potentials, detailed as follows:

(a) Clustering the point clouds: Radar point clouds are present

in the form of clusters of points originating from a scattering re-

gion on the object (Section 3). We use the standard DBSCAN [20]

algorithm to find clusters in our point cloud. DBSCAN works on

the notion of defining a neighborhood of points based on distance 𝜖
given as an input parameter. If a specific number of points (another

input parameter) is present in that neighborhood, the point and

its neighborhood are identified as a cluster. For each cluster 𝑖 , the

Figure 8: Scene with multiple cars and effect of changing potential

thresholds. Black (or red) ellipses show regions from where noise (or

actual) points get filtered. At a very high threshold (0.9), all points

from one car get filtered out, causing miss-detection. The blue and

orange line shows the direction of car.

centroid 𝑐𝑖 of its points is used as the cluster’s representative point.

For the multi-radar case, we use 𝑐
𝑗
𝑖 to represent the centroid of

cluster 𝑖 in the point cloud of 𝑗th-radar, which is represented by Γ𝑗 .
In this way, we create multiple clusters individually for each radar

point cloud.

(b) Cross-potential: Next, we discuss how we find the correspon-

dence between clusters across multiple radars. We define cross-

potential between two clusters from two different radars as a con-

fidence metric if the two clusters belong to the same object. Intu-

itively, the cross-potential between two clusters is inversely propor-

tional to the distance between the two clusters’ centroid. We denote

the cross-potential as 𝑃 (𝑐
𝑗
𝑖 |Γ𝑘 ) for the 𝑖th cluster in radar 𝑗 (𝑐

𝑗
𝑖 de-

notes its centroid) with the 𝑘th radar for 𝑘≠ 𝑗 , 𝑘 ∈ {1, 2, . . . , 𝑁 } in

an 𝑁 -radar system. Mathematically, we define 𝑃 (𝑐
𝑗
𝑖 |Γ𝑘 ) as

𝑃 (𝑐
𝑗
𝑖 |Γ𝑘 ) =

1

1 +

[
𝑟 𝑗𝑘𝑖
2

]2 (1)

where 𝑟
𝑗𝑘
𝑖 is the distance between centroid 𝑐

𝑗
𝑖 from the respective

nearest cluster centroid in 𝑘th-radar’s point cloud Γ𝑘 .
The reason behind this specific choice of potential is motivated

by the dimensions of a car. A typical car has a width of around 2m.

Therefore, we choose a function that gives a high potential to all the

points within the 2m neighborhood of a point, i.e., P>0.5 if 𝑟
𝑗𝑘
𝑖 <2m.

Note that our choice of potential function also preserves a point

lying on a vehicle, which is present in only one radar, as long as it

is in the 2m neighborhood of another high potential point (possibly

on the farther corner along the width). With this, we preserve the

extra points added due to the spatial diversity of the multiple radar

system (Section 3). Using this potential function, we can quantify

the space coherence of signals coming from multiple radars. We

combine all the points from multiple radar point clouds and add

confidence information to them. Each point gets the same potential

as its respective cluster centroid. Further, we filter all the points

below a certain potential-threshold (discussed in detail later) to

create Cross Potential Point Clouds. (We would refer to this as CPPC

algorithm for brevity). Figure 7 shows how CPPC algorithm gives

a low potential to noise or multipath points.

To study the effect of different threshold values on CPPC, we

define SNR (signal-to-noise ratio) of a point cloud as the ratio of

the total number of actual points against the noise points. Noise
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Low to Heavy Noise Reduction

No or very low noise cases

Decrease in SNR for higher thresh:

For <=0.5

For <=0.7

For <=0.9

Figure 9: SNR Improvement: Comparison of SNR improvement over

base case (without CPPC) for multiple potential-thresholds. Higher

threshold rejects more noise (green) with diminishing returns. Blue

region shows the cases with very low noise in base case, hence there

is no improvement. Red region shows the cases where SNR decreases

severely for higher thresholds.

points are defined as the points lying outside the bounding box of

the vehicle. Figure 9 shows the CDF plot of SNR improvement by

using CPPC over the case where no CPPC transformation is applied

(points from all the radars are combined without any filtering) for

multiple potential thresholds. The plot shows that improvement

in SNR increases with a higher potential threshold (green region)

but with diminishing returns for large threshold values. Certain

cases with low or no noise do not show improvement (blue region).

However, a large threshold also decreases the SNR to a large extent

in some cases, as it regards some actual points as noise and removes

them, thereby reducing the SNR (Red region). The SNR decrease

is severe for higher thresholds (>0.5) and could lead to missed-

detections (Figure 8). Hence, we choose 0.5 as our operating point

to achieve a good trade-off between SNR improvement and missed-

detections.

4.2 Time coherence with multiple frames

Space coherence can help to determine the noise out of the actual

signal and boost detection performance. However, the task of esti-

mating a bounding box is still non-trivial due to the sparsity of point

clouds. Specifically, estimating the heading direction (also called

pose or yaw angle of the bounding box) of a vehicle from a sparse

point cloud within a single frame is challenging. In many cases, the

points in a single frame might not contain enough information to

reveal the heading direction.

To solve this problem, we make an important observation that

along with the space coherence across the radars, the points also

follow a time coherence across multiple frames from radar. For

a point originating from a rigid body, the linear motion would

be the same as the car’s motion across multiple time frames. We

track the movement of points in consecutive frames and use it to

estimate heading direction. Tracking is performed on self-motion

compensated frames to remove the effect of the source vehicle

movement. Kalman filter-based corrections are employed to tackle

sensor uncertainties and noise. We track the points with the highest

cross-potentials for each object. Using the time coherence between

points, we can get a prior estimate of vehicles’ heading directions

in the scene.

5 MULTI-OBJECT 3D BOUNDING BOXES

Using multiple radar fusion to create Cross Potential Point Clouds,

we can tackle noise and potentially eliminate in-accuracy in the

detection of the number of dynamic objects. However, estimating

the number of dynamic objects and their bounding boxes is still not

a trivial task. To understand this, we need to look into the mapping

function of radar. Given a scene geometry of multiple vehicles and

environment, a radar maps it to point cloud information as

𝑥,𝑦, 𝑧 = F (scene geometry) (2)

Our aim is to inverse this mapping and estimate the scene geometry

in terms of object bounding boxes.

(𝑝𝑁 ,𝜓𝑁 ) = D(Γ𝐶𝑃𝑃𝐶 ) (3)

where 𝑁 is the unknown number of objects present in the scene;

Γ𝐶𝑃𝑃𝐶 is Cross Potential Point Clouds where each point is denoted

by its cartesian coordinates, velocity, intensity and CPPC confi-

dence; 𝑝𝑁 represents the confidence of detection for 𝑁 th objects’s

bounding box in a scene and𝜓𝑁 : {𝑐𝑥 , 𝑐𝑦, 𝑐𝑧 ,𝑤, ℎ, 𝑙, 𝜃 } denote the
tuple of bounding box parameters which are center coordinates, di-

mensions and yaw angle (angle with respect to 𝑧-axis) respectively.
D is the multiple 3D bounding box estimation system. Estimating

3D bounding boxes for objects from a radar point cloud has the

following challenges:

• Segmentation: The radar point cloud of a scene is sparsely dis-

tributed where any subset of points could belong to a single

object. Also, the number of objects and their locations are not

known a-priori. Bounding box estimation requires proper seg-

mentation of points belonging to each object in the scene. This

is a complex mapping problem where the number of targets is

not known.
• Uncertainty in bounding box parameters: Radar can only

see the part of an object which is exposed to the sensor. Therefore,

the point cloud of an object may not contain crucial information

regarding all dimensions, orientation, and center-location of the

bounding box. As a result, there is uncertainty in bounding box

parameters.

Estimating D with an exponentially large search space is a com-

plex problem. A naive solution like fitting a fixed-sized bounding

box based on point clusters will not work due to a lack of segmen-

tation information. Proper segmentation of points into different

objects and accurate 3D bounding box parameter estimation would

require complex hand-crafted feature representations of the point

cloud. However, recent advances in deep neural networks [46, 51]

have shown that we could overcome these challenges by learn-

ing complex feature representations from data. In other words, a

deep network can build experience regarding the relation between

point clouds and exact object placements and use that experience

to estimate accurate 3D bounding boxes.

5.1 RP-net Overview

To overcome the challenges mentioned above, we present a novel

deep learning architecture called RP-net. Our network is specifically

designed to handle the sparsity in radar point clouds and output

accurate 3D bounding boxes. Directly giving the raw point cloud

345



Pointillism: Accurate 3D Bounding Box Estimation with Multi-Radars SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Nx
25

6
Anchor Box 

Proposal

M
a
x

mlp 1 x 1024K x 259

Box Refinement 
ParametersNMS

1 x 1024

b) Feature pooling

mlp
Anchor Box 
Confidence 

Scores

Selected Box Features

M boxes Pooled features

(shared)

Fully Connected

Fully Connected

(64,128,256) (512,1024)
Representative features 

for M boxes 
(512,256,2)

(512,256,7)

a) Region Proposal

c) Confidence

d) Refinement

Anchor 
Point

Input Point 
Cloud

Output 3D 
Boxes

Figure 10: RP-net architecture: a) Our network takes CPPC as input with N points and 6 channels, extracts features using a pointnet layer,

and generates anchor boxes for each point. b) A Feature pooling layer pools point features from K points lying inside each box, which are passed

through pointnet and max pool layers to generate representative features for anchors. c) Confidence values are predicted for each anchor. d) High

confidence anchors are taken to the box refinement stage. The output is a set of 3D bounding boxes for each object in the scene (top view box is

shown).

as an input can not solve the problem due to the unknown number

and locations of the objects in the scene. Usually, an object detector

uses a fixed set of initial region proposals to solve this problem.

Our network proposes a novel way of generating these region

proposals (anchor boxes), based on the radar response due to vehicle

geometry and space-time coherence. Unlike LiDAR, where many

points originate from ground and other static objects like buildings,

radar data is sparse and contains mostly the points from dynamic

and metallic objects like cars after CPPC noise suppression due to

strong EM reflective properties of metals. Specifically, the sparsity

in radar data and the fact that all the points originate from the

vehicles’ surface allow us to define point-based region proposals.

These fixed size anchor boxes are used as initial estimates of 3D

bounding boxes. The size of these anchor boxes is determined by

the average size of vehicles in the training dataset. Now, instead

of the entire scene point cloud, the network works separately on

each of these anchor boxes. For each of these anchor boxes, the

task is reduced to generate a confidence number 𝑝 (Equation ??) of

whether the points inside that anchor box belongs to an object.

Confidence scores are generated for all the anchor boxes. A set

of high confidence boxes is chosen. These anchor boxes are passed

through a refinement stage that solves the uncertainty issue in

bounding box parameters. In this stage, the anchor boxes are refined

to provide accurate 3D bounding boxes of the objects present in

the scene (parameter𝜓 ).

5.2 Network Architecture Design

The job of RP-net is that given a scene point cloud, output the

set of 3D bounding boxes of the objects present in the scene. It

takes CPPC as input, which has 6 channels corresponding to x,y,z

coordinates, velocity, peak intensities, and cross-potential values

for each point. RP-net comprises of following blocks:

(a) Handling Multiple Objects.For a given scene with multiple

vehicles, region proposals are defined by placing multiple anchor

boxes in the scene. As mentioned above, we propose a novel point-

based region proposal (anchor boxes) generation scheme based

on the radar response due to vehicle geometry and space-time

coherence. Given a point, we use five different placements of anchor

box around the point (we call this point as anchor point for those

anchor boxes. Refer Figure 10). We use the pose values derived for

each anchor point using space-time coherence for the orientation

angle, as explained in Section 4.

(b) Segmentation by Feature Extraction and pooling. Our ob-

jective is to perform classification and 3D bounding box parameter

regression by learning meaningful feature representations from

the point cloud data. RP-net extracts these features in two stages,

i.e., before and after generating anchor boxes. We first use a point-

net [46] encoder of shared MLP to extract features from the entire

point cloud. We would refer the reader to [46] for an in-depth

understanding of pointnets.

In the second stage, the anchor boxes are determined for each

point. An RoI (Region of Interest) feature pooling block of the

network pools the features from all the points lying inside an anchor

box. These features are passed through another pointnet layer and

then max pooled into a single representative feature for every

anchor box defined per scene.

(c) Bounding Box confidence prediction. The entire set of rep-

resentative features of anchor boxes, obtained after the previous

block, is passed through a classification network consisting of fully

connected layers. The fully connected layers learn a mapping from

anchor boxes’ representative features to the confidence value for

each box.

Performing classification on RoI based max-pooled features al-

ways ensures that the contextual information from all neighborhood

points of the anchor point, lying inside the anchor box is accounted,

leading to better classification results. The problem of segmentation

is solved by performing classification directly on the anchor boxes.

The network will learn to choose the corresponding anchor box

with high confidence, which contains all the points belonging to

an object.

(d) Refinement of Box Parameters. In the previous step, the an-

chor boxes were rough estimates of the dimensions, center, and

orientation of final 3D bounding boxes as we used fixed-size anchor

boxes. We still need further refinement of these parameters to get

accurate bounding boxes. Note that this step is quite essential to es-

timate the accurate dimensions and location of the boxes. After the

classification step, we obtain the confidence scores for all the anchor
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Parameter Value Parameter Value

Start Frequency 77 GHz Frame rate 30 fps

Bandwidth 2240 MHz Range Res. 0.067m

ADC rate 7500 ksps Velocity Res. 2.59 m/s

Chirp Duration 40 𝜇s Max velocity 20.74 m/s

Table 1: Values of the radar parameters used. (Res.=resolution)

boxes. Since we obtained anchor boxes for each point, there could

be many overlapping high confidence boxes belonging to the same

object. Non-maximal suppression(NMS) sampling is performed on

this set using the confidence values. NMS sampling removes boxes

which have a high overlap with another high confidence box of

the same object. The representative features from the remaining

anchor boxes are passed through three fully connected layers to

output a tuple [ℎ′,𝑤 ′, 𝑙 ′, 𝑥 ′, 𝑦′, 𝑧′, 𝜃 ′] corresponding to refinements

of length, breadth, height, center coordinates, and orientation an-

gle respectively. These refinements are added to the anchor box

parameters to generate the final 3D bounding box prediction.

(e) Loss functions. The anchor box classification in the first stage

of the network is a binary classification problem that uses a cross-

entropy loss, given by

L𝑅𝑃𝑁 =
𝑁∑
𝑖=1

−(𝑦𝑖 log(𝑝𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 )) (4)

where 𝑦𝑖 = [0, 1] is the ground truth and 𝑝𝑖 is the predicted con-

fidence value. Refinement of the bounding boxes is a regression

problem and we use Smooth-L1 loss for this purpose. The loss is

given by:

L𝑟𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (𝑟, 𝑟
′) =

{
1
2 (𝑟 − 𝑟 ′)2, for |𝑟 − 𝑟 ′| < 1.

𝛿 |𝑟 − 𝑟 ′| − 1
2 , otherwise.

(5)

where 𝑟 and 𝑟 ′ are ground truth and regressed refinement values

respectively for each parameter [ℎ′,𝑤 ′, 𝑙 ′, 𝑥 ′, 𝑦′, 𝑧′, 𝜃 ′].

6 EXPERIMENTAL SETUP AND DATASET

The use of radars for perception in autonomous systems is quite

recent. No publicly available dataset collects data from multiple

radar sensors with overlapping fields of view in 3D. We collect our

own dataset for training and testing Pointillism. We collected data

from three sensors: a 16 channel Ouster LiDAR [4] placed and an

Intel RealSense D415 [2] Camera at the center of a rail , and 2 TI

IWR1443BOOST [1] radars placed at the end-points of the rail at

a distance of 1.5m, all placed on a car. Figure 12 shows our data

collection platform. We use LiDAR for ground truth annotations

and camera for visualization only. Data is labeled using an online

tool called scalabel [7]. All the sensors are controlled using a central

controller running ROS (Robotic Operating System), running on

a laptop placed in the car. Each data frame is timestamped for

synchronizing the sensors. We perform controlled experimentation

based sensor calibration. The data from all the sensors are brought

to the same coordinate system by deriving extrinsic matrices for

each sensor. Our hardware design is modular so that sensors can

be swapped, and only data extraction for that sensor needs to be

updated.

Each radar has a 3Tx and 4Rx MIMO antenna array. We use the

FMCW processing chain provided by TI for generating point clouds

characterized by x,y,z coordinates, doppler, and the intensity (peak

Figure 11: Dataset Distribution: Histogram plots of the dimensions

of the vehicles present in the dataset. It includes small golf carts to

large buses.

Tx/Rx

Figure 12: Pointillism data collection platform. (Top Left) 16-

channel Ouster LiDAR, RealSense Depth Camera for ground truth

labels. (Top Right) our radars. (Bottom) Our System: Two radars,

LiDAR, Depth camera combined synchronously to common clock.

values) of points [1]. Table 1 summarizes the operating parameters

of our radars. Figure 11 shows the distribution of the different sizes

of objects/cars present in our dataset. The dataset includes small

golf carts to large buses with a maximum number of 4 objects in the

scene. In total, we collect 54K radar frames for five real-life traffic

and driving scenes. Data was collected in different operating condi-

tions, including day, night, and adverse weather (fog) conditions

(smoke machine experiments). It is the first of its kind radar dataset

with data from multiple radars, LiDARs, and RGB cameras that can

enable various sensor-fusion-based approaches. We will release the

dataset for public use. We plan to keep expanding this dataset with

more samples over time.

7 IMPLEMENTATION

In this section we would describe the implementation details of

Pointillism.

Deep learning parameters: For implementing our network, we

use the PyTorch framework. The number of output channels is men-

tioned above each layer in Figure 10. We use Adam optimizer with

a learning rate of 0.0002 and momentum 0.9. A batch-normalization

layer follows each layer of the network. We use (2m, 2m, 5m) as

(width, height, length) to initialize the anchor boxes’ dimensions. 70

random points are sampled from each Cross Potential Point Clouds

for giving input to the network. The network takes 6 channel inputs
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Figure 13: Predicted 3D bounding boxes using only radar (red) along

with ground truth boxes (blue). The 3D IoUs of predictions are 0.52,

0.43 & 0.83 respectively. Radars can be used as a standalone sensor

for object detection despite sparsity and low resolution.
for xyz-coordinates, velocity, peak intensity values, and confidence

estimates. We sample 32 points at random from all the points lying

inside an anchor box during the feature pooling stage. If the num-

ber of points is less than 32, then the same points are repeated to

maintain consistency throughout network operation.

End-to-end training and deployment: For training the classifi-

cation network, ground truth is generated based on the IoU (Inter-

section over Union) values of the anchor boxes against the ground

truth bounding boxes. We use the top view of the anchor boxes to

calculate 2D IoUs. We choose choose top 100 anchor boxes based on

IoU match for classification. Boxes with 2D IoU overlap of greater

than 0.2 are considered as positive examples for classification. For

the refinement network, NMS is performed on the boxes to remove

boxes with more than 0.5 2D IoU overlap using predicted confi-

dence scores. The training happens simultaneously for both region

proposal and the refinement network. However, at the start of the

training, the classification head can not provide correct confidence

scores; hence, for the initial 30 epochs, we use 2D IoU scores with

ground-truth boxes as confidence values for NMS. Note that the

network is already trained during the testing phase, and we do not

need these IoU values.

8 EVALUATION

In this section, we would comprehensively evaluate each part of

Pointillism. We would compare our results against the commonly

used deterministic clustering [59] and deep learning based ap-

proaches [51] for 3D bounding box estimation on point clouds.

Figure 13 shows examples of predicted 3D bounding boxes by

Pointillism.

Testing and Training data-set: We test our system on the

dataset collected by us (section 6) that contains 54000 radar frames.

We use a train test split of 9:1. The data used for testing comes

from separate data collection runs than training data to ensure the

generalization of our approach. We also use the publicly available

astyx dataset [39] for automotive radars to demonstrate the gen-

eralization of our approach. We also compare the performance of

Pointillism against LiDAR in bad weather conditions.

Following are the metrics we use to evaluate our system:

• IoU: IoU (Jaccard Index) is a measure of the overlap between the

predicted bounding box and the ground truth box. 3D IoU is given

by Intersection Volume
Union Volume . 2D IoU is defined for the top view (also

called Bird-eye-view (BEV)) rectangles of 3D bounding boxes, as
Intersection Area

Union Area . Two equal-sized boxes with half overlap would

have an IoU of 0.33. Hence, even an IoU of around 0.5 is generally

regarded as a good overlap.

• mAP: (mean Average Precision) mAP is the area under the

precision-recall (PR) curve, which is a measure of the number of

actual boxes detected (recall) along with the accuracy of detec-

tions (precision). Specifically, precision is obtained for incremen-

tal recall values to get PR curve.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 )

𝑚𝐴𝑃 = 𝐴𝑟𝑒𝑎(precision-recall curve)

An estimation is regarded as a true positive (TP) if it is above
a particular IoU (Intersection Over Union) threshold. Note that

a higher recall rate can easily be obtained by predicting a large

number of boxes, but at the cost of sacrificing precision (more

False Positives (FP)) and vice-versa. A higher mAP means better

performance on both accuracy (precision) and exhaustiveness

(recall) of estimation. An FP could also be obtained because of

noise. An FP generated due to noise will have a very small (almost

0) IoU with any ground truth box. Hence, in a lower IoU threshold

regime, the mAP is more sensitive to the amount of noise and

allows us to better compare our noise suppression performance.
In summary, Pointillism achieves a median error of less than

37cm in localizing the center of an object bounding box and a

median error of less than 25cm in estimating the dimensions of the

bounding boxes. We use 2D IoU (BEV IoU) as the thresholds for our

mAP metric [23]. Pointillism achieves an mAP score of 0.67 for an

IoU threshold of 0.5 and a score of 0.94 for a lower IoU threshold

of 0.2, which is a 45% improvement over a single radar system. We

further show that RP-net is easily generalizable to other datasets

by evaluating its performance on Astyx dataset [39] and achieve

an mAP of 0.65 with IoU threshold of 0.2.

8.1 Performance on Bounding Box estimation

Our entire system (dubbed RP-MR-CPPC) consists of multi-radar

(MR) fusion to create Cross Potential Point Clouds (CPPC) and

RP-net to estimate 3D bounding box. To individually compare the

mAP performance of CPPC and RP-net we define the following

baselines:

• RP-SR: RP-net on single radar data.

• RP-MR: RP-net on multiple radar data without Cross Potential

Point Clouds fusion. The point clouds from multiple radars are

simply added in the global coordinate system.

• Clust: A clustering based bounding box estimation baseline. A

predefined size bounding box is estimated for each cluster found

using DBSCAN, coupled with angle estimation using Principle

Component Analysis [56]

• Clust-CPPC: The clustering based approach used on Cross Po-

tential Point Clouds.

• PointRCNN: Official implementation of well-known LiDAR

based 3D bounding box estimation network PointRCNN [51]

used on our collected dataset.
Figure 14a shows the overall performance of these systems. The

X-axis is the IoU thresholds used for the mAP values. Further, to

best examine the performance improvement brought in by CPPC,

we also evaluate the performance on a subset of validation set that

contains hard examples following KiTTi evaluation framework [23].

Hard examples are characterized by point clouds containing more

than one-fourth of the points coming from noise, and the cars are

undertaking complex maneuvers (sharp turns). The results of hard

examples are shown in Figure 14b.
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(a) (b) (c)

Figure 14: a) RP-net outperforms PointRCNN and clustering baselines for bounding box estimation. RP-MR performs better than the RP-SR system.

CPPC based combination further improves performance (RP-MR-CPPC). b) CPPC based fusion performs significantly better in hard examples due

to noise estimation and prior heading direction using space-time coherence. c) mAP performance of RP-net on Astyx dataset compared to the

clustering baseline.

Figure 15: CDF plots for errors in center location and dimensions of

predicted boxes (upwards is better). The x,y-coordinate is the depth

and lateral dimensions, respectively. Compared to the clustering-based

baseline, RP-net performs much better as it learns refinement from

the data.

CDF comparison. In this experiment, we evaluate the perfor-

mance of Pointillism on estimating the center coordinates of bound-

ing boxes and its dimensions in 2D Bird-Eye-View (BEV). Proper

estimation of bounding box parameters in BEV is critical for au-

tonomous driving[23]. Figure 15 shows the CDF plots of L1 absolute

errors in center coordinates and dimensions of bounding boxes pre-

dicted by RP-net compared against the clustering-based baseline

(clust-CPPC[56]). Errors in dimensions are normalized to actual

ground truth box dimensions. Note that the clustering baseline does

not have the refinement stage as in RP-net, and hence Pointillism

clearly outperforms the baseline. RP-net can learn the complex

point cloud to bounding box mapping function (equation 3) using

data and hence provides accurate bounding box estimation results.

Performance of RP-net. Figure 14a & 14b shows that RP-net

performs significantly better compared to LiDAR-based network

(PointRCNN) and the clustering baseline. This result is expected

as a LiDAR-based network can not be directly applied to radar

point clouds due to inherent differences in point cloud distribution.

LiDAR-based networks are designed to work in cases where back-

ground points are much larger compared to the foreground(points

on objects of interest). Also, the poor performance of the clustering

baseline conveys the complexity of the task and the requirement of

data based learning. The performance for the clustering baseline

Model vs # Cars 1 2 3 4 Entire Dataset

RP-SR 0.4 0.31 0.2 0.1 0.32

RP-MR 0.61 0.45 0.3 0.28 0.47

RP-MR-CPPC 0.75 0.52 0.41 0.38 0.6

Table 2: Recall rate for different number of cars in the scene.

Model Velocity Intensity CPPC mAP

Ablated Model

� � � 0.56

� � � 0.60

� � � 0.61

Final Model � � � 0.67

Table 3: Ablation studies: change in performance with different input

channels to the network.

increases with lower threshold values because it lacks any refine-

ment of the bounding box to get the correct dimensions of the box.

RP-net architecture is specifically designed to handle the sparsity

and non-uniformity of radar point clouds by learning to model their

intricacies and using a special set of anchor boxes.

Effect of using multiple radars.Multiple radar fusion based

approach (RP-MR) outperforms the single radar baseline (RP-SR) in

all the cases (Figure 14a & 14b ). The mAP value increases from 0.45

to 0.61 for IoU threshold 0.5 as we move to multiple radars from a

single radar. The reason behind this is the specularity of mmWaves

that prevent all the features from being captured and hence makes

it hard to get the dimensions of the box right, inherently affecting

the mAP values. Using multiple radars decreases the adverse effect

of specularity, as evident from the increase in mAP values from

single to multiple radar approaches.

Performancewithmultiple carsWeevaluate the performance

of different networks in detecting the vehicles present in the scene.

Table 2 shows the recall rate achieved with the different number of

cars present in the scene. The performance drops when the number

of vehicles in the scene increases due to occlusions. Still, RP-MR-

CPPC outperforms the single radar non-CPPC based models in

all the cases, which proves the superiority of our algorithm over

baselines.

Effect of using CPPC. Figure 14a shows that using a CPPC

based fusion approach is better than just a naive combination of
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Model mAP (IoU>0.5) Time

256 channels 0.50 0.018 seconds (55 fps)

1024 channels 0.68 0.0208 seconds (48 fps)

Table 4: Effect of model size on time and performance

multiple radar point clouds (RP-MR). In the hard examples (fig-

ure 14b) the effect is even more significant. The performance in-

creases from 0.44 to 0.78 by using CPPC on multiple radars for IoU

threshold of 0.5. Note that even for the clustering based baseline,

using CPPC fusion improves the results for bounding box estima-

tion. The space-time coherence in CPPC reduces the noise, thereby

minimizing false positives and improving results.

Comparison to other approaches (LiDAR/sensor fusion).

In order to put these results into perspective, we provide some

results from LiDAR-based approaches. PointRCNN [51] achieves

0.78 mAP on KiTTi LiDAR dataset [23]. A camera and radar fusion

approach, on a dataset provided by Astyx GMBH [39], achieves an

mAP value of 0.45 on the complete dataset. Although it is not fair to

directly compare with the LiDAR results, as the underlying datasets

and IoU thresholds used are different (LiDAR-based approaches use

a higher IoU threshold of 0.7), but we want to emphasise on the

fact that it is possible to achieve LiDAR or camera like perception

using just radars. Moreover, a higher resolution radar can produce a

denser point cloud, that would further increase the IoU performance

using our method.

8.2 Model Generalization on Astyx dataset

In order to evaluate the generalization of our network, we test our

network on the recently released Astyx dataset [39]. The released

data set contains only 545 scene point clouds, which are quite less

in order to allow efficient training. Also, the dataset contains only a

single radar, which prevents us from applying our entire processing

chain to the dataset. We divide the dataset into 5% test (and rest

training) set and evaluate the object detection performance. RP-net

is able to achieve a performance of 0.65 mAP on this dataset with

an IoU threshold of 0.2 while the clustering baseline achieves a

significantly lower mAP of 0.05, as shown in Figure 14c.

8.3 Effect of input channels

In this experiment, we would perform the ablation study for adding

different channels to our input. We report the mAP score changes

with the incorporation of a different number of input channels. Ta-

ble 3 summarizes the performance of this experiment. As expected,

adding the velocity as an input channel brings the performance

improvement as it provides the context about the direction of the

vehicle’s movement. Adding the intensity values do not have much

effect on the performance. We hypothesize that as the target objects

are only cars, there isn’t much difference between the intensity of

reflections. Lastly, using Cross Potential Point Clouds based fusion

further improves the performance to mAP score of 0.67 because of

space-time coherence.

8.4 Model Architecture validation

In this section, we evaluate the effect of model size on the perfor-

mance. We change the number of channels for the representative

feature vector of anchor boxes and compare the performance. Ta-

ble 4 shows the result of our analysis. This experiment sheds light

on the trade-off of time and accuracy. Clearly, with the increase in

Camera Image

Figure 16: Performance comparison of different sensors in the pres-

ence of adverse conditions. The left plot shows the depth estimation

performance of Radar and LiDAR for an object directly in front of the

sensor in the presence of fog. The right figure shows the camera image

for the experiment.

the number of layers from 256 to 1024, the model performs better

(0.18 increase in mAP ) but lags on time (0.01 sec slower).

One of the major requirements of an autonomous perception

system is real-time performance. Our best model makes inference

at 50fps while running on an NVIDIA GTX 1080 Ti GPU(Table 4).

Normal human reaction time is 100ms, which means that our model

can provide 5 different scene perception outcomes until a normal

human reacts to an event. Thus, Pointillism has huge potential to

be deployed on a real-time autonomous vehicular system.

8.5 Performance in bad weather

The main objective of using radar as a primary sensory modality

is to enable all-weather perception. To compare the performance

of different sensing modalities in adverse weather scenarios, we

perform experiments in foggy conditions. We use an artificial fog

generator to simulate adverse weather conditions and estimate the

performance of the depth estimation of a single-vehicle present in

front of the sensor. The first point of return is regarded as the pre-

dicted depth. Figure 16 shows the performance comparison between

LiDAR and Radar (the results are an averaged over 100 frames).

LiDAR and camera get severely affected in the presence of fog,

which would pose severe problems for tasks like depth estimation.

Radar, on the other hand, remains unaffected. Moreover, past work

[16, 32] conduct large scale experiments using fog chambers and

artificial rain generators to show the prominence of radar sensors

compared to LiDAR sensors in adverse weather conditions.

9 RELATEDWORK

The techniques designed in Pointillism are fundamental and could

be used to improve LiDAR, ultra-sonic, and infra-red imaging other

radar applications. Spatial separation analysis could be used for

other applications to identify optimal separation. Similarly, Cross

Potential Point Clouds and RP-net can potentially be extended to

benefit all the radar sensing applications relying on radar point

clouds. Our work is closely related to the work on the following:

MIMO radar and Multi-radar fusion. Radars have been long-

standing sensors in the field of surveillance and detection. Past

works have considered the fusion of multiple radar sensors for

aerial surveillance [21, 31, 43, 57] but do not have much relevance

to self-driving scenarios involving high-resolution MIMO radars. In

[43], a nearest neighbor based association scheme is given, which

is again limited to aerial surveillance. Also, the presence of ghost
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objects is not taken into account, which is a major part of real-

world automotive radar data. We perform all our analysis on real

data of dynamic traffic environments. A multi radar setup is con-

sidered in [47] with a common field of view. They use Labelled

Multi Burnoulli filter to track and associate the detections in multi-

ple radars but fail to leverage the multi-sensor input or optimize

spatial separation. They instead treat it as a single sensor. A multi

radar system deployed in [38], compares performance with a single

radar system for the task of blind-spot detection using Kalman filter

based tracking. They use multiple radars to achieve a wider FoV

by simply combining the detections generated from two radars

and could not report any significant performance gains. Pointillism

takes advantage of multiple radars for increasing the point cloud

density while minimizing noise recorded in the scene, as opposed

to getting a wider FoV.

Synthetic Aperture Radar Synthetic Aperture Radar(SAR) [22,

24, 25] based techniques are used to increase the resolution of radar,

but they have limitations. SAR approaches can not resolve the spec-

ularity problem of mmWaves, which requires a different viewpoint

as provided by multiple radars in Pointillism. For a vehicle moving

on the road, a SAR based approach needs to be implemented using

the motion of the car as done in [22, 24], instead of physically mov-

ing the radar. This approach to SAR only increases the resolution

on the sides of the ego vehicle (side-looking SAR). Applications of

this method include parking spot detection, but object detection in

front of vehicles is not improved. A forward-looking SAR is imple-

mented in [25] by using a beam scanning 300 GHz radar, which is

different from the 77 GHz MIMO radar we used. This approach tries

to improve angular resolution at small boresight angles. It does not

take care of noise generated by the multipath and random clutter,

which is handled by Pointillism’s CPPC formulation. Pointillism

’s approach for multi-radar fusion generalizes to the fundamental

distribution of radar point clouds and could be applied to all the

above work and reap significant benefits for tackling specularity,

noise cancellation, and sparsity.

Deep Learning based 3D bounding box.With the abundance of

open-source LiDAR datasets [10, 15, 23] for autonomous driving,

object detection on LiDAR point clouds has seen numerous ad-

vancements. Point clouds are converted into voxel grids for object

detection with bounding box prediction in [36, 45]. Direct object de-

tection on point cloud data is performed in [44, 55]. However, they

use calibrated 2D RGB images to segment instance-based frustums

from a point cloud. A camera-radar fusion approach for bounding

boxes is provided in [40] but would be infeasible for all-weather

perception tasks. PointRCNN [51] performs 3D bounding box esti-

mation only using LiDAR point clouds. However, due to the sparsity

of radar point clouds, the approach fails to capture enough context

for segmentation. RP-net (Our approach) combines the region pro-

posal and segmentation to overcome the sparsity problem. Andreas

et al. An approach based on frustum pointnet is followed in [17],

where patches are considered throughout the 2D image followed by

a segmentation head that identifies the radar targets lying on the

object of interest. However, the patch proposal can not be readily

extended to 3D detection.

Radar sensing for health-care and indoors. FMCW is a popular
technique for RF sensing. FMCW based radars (WiFI frequency)

have also been used for indoor health monitoring and localization

applications [11, 12, 28–30, 52, 58, 60]. Low-frequency radars (WiFI

frequency) have been used [52, 61–63] for tasks like human pose

estimation, fall detection, and sleep stage detection using deep

learning. All these works use low-frequency FMCW based and can

not be readily applied in outdoor settings. mmWave radars have

been used indoors for ego-motion estimation and corridor mapping

[13, 34]. The techniques cross-potential point cloud and RP-net can

be used by the indoor radars as well, as they are complementary to

all existing work and provides a neat framework that is inspired by

the distribution of the radar point clouds. For example, reflection

tracking is a key technique for all the above work. One could apply

Pointillism’s cross-potential based ideas to the reflections and their

tracking to make them robust against noise and dynamic multi-

path [11].

AutomotiveRadar data processing using deep learning.Deep
learning has been applied to various stages of radar data processing.

Past works [33, 54] perform object classification on radar data using

CNNs. Pointnet++ [46] is used directly on radar point clouds to

perform semantic segmentation in [49]. These approaches do not

consider the major challenges of specularity and sparsity with radar

point clouds. A GAN based approach[26] has been proposed to

image cars using synthetic aperture based sensing but is limited to

static scenes. 2D box prediction using radar tensors for the highway

has been done in [35]. Their approach is only limited to traffic scene

where vehicles are moving straight and can not retrieve the 3D pose

of vehicles. The special distribution of radar point clouds requires

an approach specifically designed for radar data, such as CPPC.

We believe Cross Potential Point Clouds can help existing work to

improve the performance significantly.

10 LIMITATIONS AND FUTUREWORK

Pointillism presents a system that enables object detection using

only automotive radars. It tackles the fundamental problems of

noise, specularity, and sparsity present in radar point clouds by

using multiple radars at once. The radars used during the evaluation

of our system offer an angular resolution of 15 degrees. Current

high-resolution automotive radars provide an angular resolution

of 1 degree that would potentially lead to better bounding box

refinement and hence better IoU values. This means that the current

mAP performance of pointillism at higher IoU thresholds (section

8) could further be improved by using higher-resolution radars. A

natural extension of this work is the time-based tracking of dynamic

objects present in the scene. In section 4, we describe how we use

space coherence to eliminate noise and time coherence to get a pose

estimate. A tracking based formulation could possibly combine the

noise filtering with pose estimation by looking at time-based data

from multiple radars. Secondly, the radars also provide doppler

estimates of the objects. We use doppler as an input channel to RP-

net. However, it could also be used to classify different types of road

users like pedestrians, bikes, and cars. The concepts introduced in

our paper relate to the fundamental nature of radar point clouds

and can be extended to enable more complicated tasks than object

detection.
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